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ABSTRACT: The world food system is globalized and interconnected, in which trade
plays an increasingly important role in facilitating food availability. We present a novel
application of network analysis to domestic food flows within the USA, a country with
global importance as a major agricultural producer and trade power. We find normal node
degree distributions and Weibull node strength and betweenness centrality distributions.
An unassortative network structure with high clustering coefficients exists. These network
properties indicate that the USA food flow network is highly social and well-mixed.
However, a power law relationship between node betweenness centrality and node degree
indicates potential network vulnerability to the disturbance of key nodes. We perform an
equality analysis which serves as a benchmark for global food trade, where the Gini
coefficient = 0.579, Lorenz asymmetry coefficient = 0.966, and Hoover index = 0.442.
These findings shed insight into trade network scaling and proxy free trade and equitable
network architectures.

1. INTRODUCTION

Food security is being placed under increased pressure due to
economic development, population growth, and climate
change.1,2 The world food system is increasingly globalized and
interconnected,3 making it imperative to understand the
consequences of this increasingly complex food system for a
secure food supply. Trade flows are an essential component of
the new, globalized food system and are increasingly important
for global food availability,4,5 with repercussions for carbon
emissions,6 nutrients,7,8 water resources,9 and povery.10 Thus, it
is increasingly important to understand the structure of food
trade. In this paper, we apply tools of network theory to domestic
food flows within the USA, a country with global importance as a
major agricultural producer and trade power.11,12

Network analysis has been increasingly used to understand
complex systems. This recent interest in complex networks is
largely due to the discovery of organizing principles in
networks,13,14 such as community structure15 and scale-free
properties.16 Additionally, network analysis has become
increasingly popular due to its flexibility and ability to represent
many real-world systems,17 including transporation sys-
tems,18−20 the worldwide web,16 international tourism,21

financial transactions,22,23 and scientific collaborations,24,25

among others. In this paper we present a novel application of
network analysis to data on food flows within the USA.
Global trade has been studied for quite some time,26,27 more

recently using tools of network theory.28,22,29−31 Recent work
has begun to focus on the network characterization of global food
trade.11,3,32 This study advances reseach in this area in three main
ways. First, this network analysis of domestic food flows occurs at
a different scale to the studies of global trade networks in the

literature. In this way, this study help us to understand the impact
of scaling on network properties, which is an important question
in the literature.28 Second, food flows within the USA occur
without barriers to their movement (i.e., due to the Commerce
Clause of the U.S. Constitution), thereby proxying a free trade
setting. Studying the network properties of food flows within the
USA can thus help us to understand the network properties that
may occur under free trade situations. Third, flows of food within
the USA serve as a null model for trade equity (i.e., since the USA
has a homogeneous population, national agricultural policy, and
absence of trade barriers). In this way, studying food flows within
the USA enables us to quantify how equitable we can expect
global flows to be, which is an important focus of current
research.10,33,34,5

2. METHODS

2.1. Food Flow Data. We obtain data on the movement of
food within the USA from the Commodity Flow Survey (CFS).
The CFS was created through a partnership between the Census
Bureau and the Bureau of Transportation Statistics. The CFS
presents information on the movement of goods in the United
States. It provides information about commodities shipped, their
value, weight, and mode of transporation for commodities from
mining, manufacturing, wholesale, and select retail and services.
The CFS is conducted every five years as part of the Economic
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Census.35 However, bilateral data is currently only available for
the year 2007, so this is the year that we focus our analysis on.
We select food commodities for our analysis. There are five

categories of food commodities in the CFS. They are “cereal
grains”, “other agricultural products”, “animal feed and products
of animal origin, nec”, “meat, fish, seafood, and their
preparations”, and “other prepared foodstuffs and fats and
oils”. Note that our analysis relies solely on trade data for these
food commodities and does not directly incorporate production
or consumption data. However, food flows implicitly capture
some production and consumption information.
For the USA, data are provided at both the state and “CFS

area” level. A CFS area is a geographic area that is drawn from a
subset of Combined Statistical Areas (CSAs) and Metropolitan
Statistical Areas (MSAs) as defined by the Office of Management
and Budget. If a metropolitan area spans multiple states, then the
CFS area is defined for each state part with significant
transportation related activity. State parts of otherwise included
metropolitan areas with little transportation activity are included
in the remainder of that state. The CFS defines the “remainder of
state” to represent those areas of a state not contained within a
separately published metropolitan area. There are a total of 123
CFS areas for the 2007 database. These are listed in the
Supporting Information (SI).
2.2. Network Construction.We create bilateral matrices of

food trade connections and volume flows within the USA. Here,
we focus on food volume flows [tons], because this unit of
measurement has important implications for environmental
issues, such as carbon emissions per ton-miles transported,6

nutrient leaching,7 and embodied water resources per unit
food.11 Note that this approach provides a different, yet
complementary, perspective to other weighting schemes (i.e.,
financial value,3 embodied water11) commonly employed in
studies of food trade. Our weighting scheme will bias toward
flows with a greater food weight.
The CFS provides 15 512 data entries for food flow in value

terms and 12 672 data entries for food flow in volume terms. We
utilize the value flow data to obtain more information for volume
flows. We do this by determining the average commoditiy price
for each food group. We then divide the value flow data by the
commodity specific price information to estimate the volume
flow for each instance where the volume data are missing but the
value data are available.
In this way we obtain commodity-specific weighted and

directed matrices of food flows within the USA for 2007. The
nodes of the network are the CFS areas of the USA and the links
connecting nodes are weighted by the volume of food flow [tons]
and directed by the direction of flow. The individual commodity-
specific matrices are summed to obtain the aggregate food flow
matrix. For the remainder of the paper, we refer to this network as
“aggregate”. Unless we specifically refer to the network of a
certain commodity, we are referring to the aggregate food flow
network.
2.3. Network Statistics. From the weighted and directed

matrix of food flows (W), we calculate network statistics.
Network density (p) quantifies how interconnected the network
nodes are and is measured by p =M/[N(N− 1)], whereM is the
number of links and N(N − 1) is the number of possible links.
Node degree (k) is a fundamental network property that
considers node connectivity. Specifically, kmeasures the number
of links of each node, which is an unweighted property, so we
refer to the adjacency matrix (A). Since our network is directed,
we consider node in- and out-degree, based on whether the

import or export relationship is being considered, respectively.
The node in-degree counts the number of links incoming to a
node and is measured by kini = ∑jaji, while node out-degree
counts the number of links emanating from a node and is
measured as kouti = ∑jaij, where a is an element of A.36

To consider the weights assigned to links in our network, we
quantify node strength (s). Node strength is the weighted
corollary to node degree and measures the sum of the weights for
nodal links. To take direction into account, we consider node in-
and out-degree, as before. Now, node in-strength sums the value
of links incoming to a node and is measured by sini =∑jwji, while
node out-strength sums the value of links emanating from a node
and is measured with souti =∑jwij, where w is an element ofW.36

Thus, s differentiates between connections with different values
or intensities. Here, the volume of food trade [tons] provides the
weight for our trade links.
Node degree and strength provide local measures of the

importance of a node to the network. To better understand the
importance of a node to the overall structure of the network, we
consider average nearest neighbor degree, clustering, and
betweenness centrality. Average nearest neighbor degree (knn)
measures the affinity of a node to connect to high- or low-degree
neighbors, or the network correlation structure.37,38 When
direction is taken into account, weighted values of knn can be
measured with four directional pairs: in−in (ii), out−out (oo),
in−out (io), and out-in (oi). Clustering can be measured both
locally and globally for networks. The global clustering measure
indicates overall clustering within the network, while local
clustering (C) describes the propensity of nodes in the network
to form closed triangles.37With direction, there are eight possible
combinations of C that fall into four categories (see ref 39 for a
complete description and representation): Cin, Cout, Ccyc, and
Cmid. Our equations for knn and C are provided in the SI and
follow that in ref 11.
Betweenness centrality (B) quantifies the importance of a

node or link in terms of its importance to the overall network
architecture.38 Here, we calculate node B, which counts the
fraction of shortest paths going through a given node, defined as
B =∑i,j(σ(i,u,j)/σ(i,j)), where σ(i, u, j) is the number of shortest
paths between nodes i and j that pass through node u, σ(i, j) is the
total number of shortest paths between i and j, and the sum is
over all pairs i, j of nodes.14We normalize B by (N− 1)(N− 2)/2
to maintain B ∈ [0, 1].40 Directed paths are used to calculate
directed B and undirected paths for undirected B.
Finally, we conduct a triadic analysis of the USA food flow

network. Triads are three-node directed subgraphs. A small
number of triad patterns are able to describe a wide variety of
real-world networks.41,32 Triad frequencies of empirical net-
works are compared to frequencies in a random network to arrive
at a normalized z-score for each triad type (refer to SI). When the
normalized z-score is plotted for all triad types, the triad
significance profile (TSP) is obtained, which can be directly
compared across networks.

2.4. Measures of Equality. We calculate several measures
for the equality of food flows across CFS areas in the USA. First,
we calculate the Gini coefficient (G) which measures the
inequality among values of a frequency distribution and has thus
often been used to quantify trade equality.33 G ∈ [0,1], where 0
indicates perfect equality (i.e., all values are identical) and 1
indicates perfect inequality (i.e., one node has all of the value in
the network).42
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Additional statistics can be used to supplement the Gini
coefficient in measuring distributional equality. The Lorenz
asymmetry coefficient (S) measures the asymmetry of the Lorenz
curve, which describe the inequality in the distribution of a
quantity.43,33 S values = 1 indicate that the Lorenz curve is
symmetric, values of S > 1 indicate a few nodes consuming more
resources, and S < 1 values indicate inequality due to a large
number of nodes with small food flows. The Hoover index (D)
measures the maximum vertical distance between the line of
equality and the Lorenz curve and can be interpreted as the
proportion of food trade by above-average nodes that would
need to be redistributed to below-average nodes to achieve trade
equality. If the entirety of food trade would need to be
redistributed to achieve perfectly equitable trade then D = 1 (i.e.,
100%). However, if perfectly equitable trade already exists, then
trade would not need to be redistributed, so D = 0.44,33

3. RESULTS AND DISCUSSION
3.1. Summary Statistics. There are 123 nodes (i.e., CFS

areas) and 4198 links in the USA food flow network. Thus, the
USA food flow network is almost as interconnected (p = 0.28) as
global food trade (p = 0.33; refer to Table 1 for comparisons
between the USA and global food flow networks). Network
summary data are provided by commodity in SI, Table S2.
We present a map of the USA food flow network in Figure 1,

using network visualization software.45 This image illustrates the
flow of food between states in the USA. We construct this map at
the state-level to enhance visual understanding, but all other
analyses in this paper are performed using the 123 CFS areas as
the network nodes. The volume of food flows represented in
Figure 1 is 414.7 × 106 tons (refer to Table 1 and note that other
studies of the global food trade network use value [$]3 or
embodied water11,33 to weight the food flows).
Midwestern states are shown as major exporters of food to the

key ports in Louisiana, California, and Texas. In other words, the
movement of food from the Midwest to ports in Louisiana,
Texas, and California are key pathways for domestic food flows
before international export. This highlights the fact that domestic
food flows are part of a larger system and not closed, unlike global
food trade: a key difference to consider when comparing the two
systems. The largest link in the USA food flow network is from
Illinois to Louisiana. The dense web of connections illustrates
how interconnected trade between states is, which is what is
expected, given the US Constitutional requirement for free trade
between states.
3.2. Degree and Strength. A highly skewed degree

distribution is a common feature of many real-world networks.
Power law degree distributions are a feature of some networks,16

while deviations from power-laws,46 exponential degree
distributions,47 and normal degree distributions32 have also
been shown. From Figure 2A,D it is clear that the USA food flow
network exhibits a normal distribution (mean kin = kout = 34.1),
the hallmark of social networks among people.48 This differs
from the scale-free character of the world trade web of all
commodities.28 For global food trade specifically, the import
degree distribution is also normal,32 similar to USA-only food
flows, while the global export degree distribution exhibits a fatter
tail than the USA food flow network.11 Note that mean k in the
USA is greater than for global trade in Table 1, indicating a more
social network. Refer to the SI for the top 10 nodes in terms of
degree.
The normal degree distribution of USA food flows likely

occurs as the results of complex social interactions in the food

production and trade system. Climate suitability and local
politics likely encourage positive feedbacks on the food
production system, mimicing a preferential-attachment-like
pattern. However, domestic subsidies and policies encourage
production in many places, such that no “‘superhubs’” are
formed. Thus, the normal distribution reflects national policies
that balance out the preferential attachment.
The distribution of node strength for the USA food flow

network is shown in Figure 2B,E. A Weibull distribution is fit to
the data, indicating high heterogenity of food movement around
the USA, specifically in terms of export volumes. The equation

for theWeibull distribution fit to sout is P(Sout > sout) = e
−(sout/2.64)

0.7

.
The Weibull distribution provides the best fit to sin (P(Sin > sin =

Table 1. Properties of the USA Food Flow Network and the
Global Food Trade Networka

USA Global

Summary
no. nodes 123 2023

no. links 4198 13 5343

density 0.28 0.333

total flow 414.7 × 106 tons $1060B3

Degree
mean k 34.1 32.811

kin [0,86] [0,97]11

kout [1,94] [0,159]11

Triad
Antimotif 6 −0.667 −0.49732

Motif 13 0.596 0.48632

Equality
Gini (G) 0.579 0.62633

Lorenz (S) 0.966 0.7033

Hoover (D) 0.442 0.533

Assortativity
unweighted unassortative disassortative28

weighted assortative assortative11

Clustering
Cout 0.72 0.5111

Cin 0.74 0.7411

Ccyc 0.23 0.0911

Cmid 0.28 0.1311

Cout
W 0.78 0.7311

Cin
W 0.82 0.9411

Ccyc
W 0.29 0.1611

Cmid
W 0.32 0.2411

Betweeness
ranked Bd Los Angeles USA3

Chicago Germany3

Texas France3

Pennsylvania Netherlands3

New York Great Britain3

aThe network properties of USA food flows [tons] are presented here
for the first time. Properties of global food trade are taken from the
literature. Note that there are no studies of global food trade weighted
by food volumes for direct comparison with the USA food network.
Specifically, food trade is weighted by value [$] in ref 3 and by
embodied water in refs 11 and 33. Global triad values (an unweighted
measure) come from ref 32. Note that “Los Angeles” refers to “Los
Angeles-Long Beach-Riverside”, “Chicago” refers to “Chicago-Naper-
ville-Michigan City”, “Texas” refers to “Remainder of Texas”,
“Pennsylvania” refers to “Remainder of Pennsylvania”, and “New
York” refers to “New York-Newark-Bridgeport”.
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e−(sin/2.86)
0.8

), although the left tail of the data diverges from the
analytical distribution, indicating that more nodes of small
import volume exist in the data than expected from the Weibull
distribution. The mean node strength in the USA food flow
network is 3.4 × 106 tons. Refer to Table 2 for the list of the top
10 nodes in terms of strength. Note that major USA harbors
import large volumes of food from the interior of the country for
export to the rest of the world.
The relationship between strength and degree is a power law

(shown in SI, Figure S1), as in global food trade.11 This means

that as a node increases its connectivity with other nodes, it is
much more likely to trade larger volumes of food. Here, the
power law relationship between trade connections and volume is
essentially independent of direction (i.e., note that the exponent
in the power law relationship is very similar for import and export
relationships in SI, Table S4), whereas import trade relationships
exhibit a larger exponent at the global scale.11

The exponent for the power law relationship is very similar
across commodities, with the exception of import flows of cereal
(refer to SI, Table S4). Increasing import connections leads to

Figure 1. Network representation of food flows between the 50 USA states. The states are ranked according to the total trade volume and plotted
clockwise in descending order. The size of the outer bar indicates the total trade volume of each state as a percentage of total USA trade. Export volume is
indicated with links emanating from the outer bar of the same color. Import volume is indicated with a white area separating the outer bar from links of a
different color. Note that the largest link in the USA food flow network is from Illinois to Louisiana. Midwestern states are shown as major exporters of
food to the key ports in Louisiana, California, and Texas. The total trade volume of food represented by this graph is 414.7 × 106 tons.

Environmental Science & Technology Article

dx.doi.org/10.1021/es500471d | Environ. Sci. Technol. 2014, 48, 5439−54475442

http://pubs.acs.org/action/showImage?doi=10.1021/es500471d&iName=master.img-001.jpg&w=499&h=504


much higher trade volumes of cereal, which is important to note
since cereal plays such a dominant role in food security and global
trade systems, particularly maize exports from theUSA to the rest
of the world.49

3.3. Assortativity. In the previous section we analyzed node
degree and strength, which are first-order network indicators. In
other words, statistics on k and s only provide information on a
node and its trade partners that are one step away, but do not
contain information on the neighbors of that node or on the
global network topology. In this section we investigate network
assortativity, which is a second-order network indicator, since it
includes information on nodes lying two steps away from the one
under consideration.30

Network assortativity describes how similar connected nodes
are in terms of some attribute. Here, we consider how similar the
degrees of connected nodes are, that is, assortative mixing by
degree. A common method for determing network assorativity is
by plotting knn vs degree. If this graph exhibits an increasing
relationship, the network is referred to as “assortative”. However,
if a negative relationship is evident, then a “dissassortative”
network structure exists. Social networks tend to exhibit
assortativity, while technological and biological networks are
most often characterized by disassortativity.50 Interestingly,
economic networks exhibit features of both technological and
social relationships.38 For example, the venture capitalist network
demonstrates positive degree correlations,51 while negative
degree correlations were shown for bank networks52 and global
trade.28

The network topology of domestic food flows (i.e., the
unweighted conectivity structure) exhibits the structure of an
“unassortative” network, that is, neither assortative nor

Figure 2.Node degree (k), strength (s), and betweenness centrality (B) distributions. In all plots the gray points indicate data and the black lines indicate
analytical distributions. Import (A) and export (D) node degree distributions follow a normal distribution, reminiscent of the small world networks

typical in social systems. The Weibull distribution fits export volume (E; P(Sout > sout) = e−(sout/2.64)
0.7

), undirected B (C; P(Bu > bu) = e−(bu/0.004)
0.7

), and

directed B (F; P(Bd > bd) = e
−(bd/0.01)

0.7

), indicating higher heterogeneity than kwith a “fat” tail. Import volume (B; P(Sin > sin = e
−(sin/2.86)

0.8

) is best fit by the
Weibull distribution, but diverges from Weibull for low values of sin, indicating that nodes with small numbers of import partners are more common in
the data.

Table 2. Node Strength Rankings in 2007a

rank sin sout

1 New Orleans-Metairi-
Bogalusa

43.7 Iowa 31.6

2 Remainder of Texas 18.1 Remainder of Illinois 28.3
3 Los Angeles-Long Beach-

Riverside
17.1 Remainder of Missouri 20.8

4 Chicago-Naperville-
Michigan City

13.4 Nebraska 18.1

5 Remainder of
Pennsylvania

12.1 Remainder of California 17.0

6 Remainder of Illinois 12.0 Los Angeles-Long Beach-
Riverside

11.9

7 Remainder of California 10.4 Remainder of
Pennsylvania

11.4

8 Iowa 10.1 Remainder of Minnesota 11.4
9 Atlanta-Sandy Springs-

Gainesville
8.6 Remainder of Wisconsin 10.9

10 Remainder of Louisiana 8.1 Remainder of Indiana 10.4
aTop 10 positions according to node in-strength (sin) and out-strength
(sout). Note that volume data are provided in 106 tons. The maximum
node in-strength is 43.7 × 106 tons and the minimum is 0. “New
Orleans-Metairi-Bogalusa” exhibits the highest in-strength of 43.7 ×
106 tons. The second and third highest in-strength are for the
“Remainder of Texas” and “Los Angeles-Long Beach-Riverside”, with
values of 18.1 × 106 and 17.1 × 106 tons, respectively. The node out-
strength ranges from 0.007 × 106 to 31.6 × 106 tons, with a mean
value of 3.4 × 106 tons. The largest export volume is for “Iowa” of 31
× 106 tons, followed by the “Remainder of Illinois” and “Remainder of
Missouri”, with volumes of 28.3 × 106 and 20.8 × 106 tons,
respectively.
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disassortative (refer to SI, Figure S2). This differs from the global
trade network, whose network topology exhibits disassortativ-
ity.28

Network assortativity can also be quantified through the
Pearson correlation coefficient (τ).50 Here, we measure τ for
degree between pairs of linked nodes, where values ∈ (−1, 1).
Values of τ = 1 indicate perfectly assortative mixing, while values
of τ = −1 indicate perfectly disassortative mixing.53 For an
unassortative network τ = 0.
The connectivity structure of the USA food flow network

exhibits τ values that are very close to 0, indicating largely
unassortative mixing (refer to values of knnii, knn,io, knnoo, and
knn,oi in SI, Table S5), particularly in comparison to a τ values for
global trade roughly equivalent to −1.30 Interestingly, knnii (=
−0.128) and knnoi (= −0.177) are both much more strongly
disassortative than knnio (= 0.008) and knnoo (= 0.014). This
indicates that when you look at the neighbors of a given node,
they tend to have lower import trade connections.
The domestic network becomes assortative when food

volumes are considered (refer to positive values of knnii
W, knnio

W,
knnoo

W, and knnoi
W in SI, Table S5), the difference between the

unweighted and weighted relationship is not significant (note the
small gap between the “weighted” and “unweighted” lines in SI,
Figure S2). In particular, the difference between the unweighted
and weighted assortative structure is not as severe as it is for
global trade (refer to Table 1). For global trade, the unweighted
knn structure is clearly disassortative, but becomes assortative
when trade volumes are taken into account.11 This indicates that
certain nodes hoard the majority of the resources among
themselves at the global scale. This sharp difference in
unweighted and weighted assortativity structure is not evident
in USA food flows, although a difference is present. This indicates
that the “weighted rich club”30 feature of global trade is not
prominent in domestic food flows. Thus, domestic food flows
exhibit assortative sorting, much like social networks,50 without
evidence of a weighted rich club.
3.4. Clustering. Mean values of network clustering are

presented in Table 1. Mean C values are higher for USA food
flows than for global food trade. This indicates that nodes within
the USA are more interconnected than nations participating in
international trade (note that even values of Ccyc and Cmid are
higher for USA food trade, which are rare clustering patterns in
global trade). However, the exception is for Cin

W = 0.82 for USA
and 0.94 for global trade. Mean C values are not significantly

different in unweighted and weighted terms for the USA
network, providing further evidence for the absence of a
weighted rich club. This shows the propensity for certain nations
to dominate weighted trade at the global scale.
Node clustering exhibits high heterogenity at the global scale,

in which there is a power law relationship between C and k.28

Here, the directed C and k relationships (refer to SI, Figure S3)
are absent of the power law property evident in the global trade
network. The relationship between C and k for USA food trade
exhibits a much more homogeneous network, with high values of
clustering across values of k. The addition of trade volumes to our
calculation of local clustering does not change the slope of the
graphs significantly, another indication that USA food flows do
not exhibit a weighted rich club.30

3.5. Betweenness Centrality. Betweenness centrality (B) is
a tertiary network measure, as it quantifies the importance of
nodes to the entire network structure.38 The USA exhibits the
highest B of all nodes in the global food trade network (refer to
Table 1). Thus, in this paper we characterize the network
properties of the most central country in the global food trade
network.
The distribution of node betweenness for the USA food flow

network is provided in Figure 2C,F. B is best fit by a Weibull
distribution, indicating a “fat tail” representation of a few key

nodes to the network. Directed B is fit by P(Bd > bd) = e
−(bd/0.01)

0.7

and undirected B is best fit by P(Bu > bu) = e−(bu/0.004)
0.7

. Thus,
directed B exhibits a fatter tail than does undirected B. In other
words, when direction is taken into account, some nodes increase
in importance to the topology of the network (refer to SI, Table
S7). The node that exhibits the highest directed B is “Los
Angeles-Long Beach-Riverside”, with a value of 0.095 (refer to
Table 1). The nodes with the second and third highest directed B
values are “Chicago-Naperville-Michigan City” and “Remainder
of Texas”, with values of 0.085 and 0.078, respectively. These are
important harbors for the barge transport of food. The USA has
the highest B value at the global scale, further highlighting the
importance of these harbors for global trade, followed by
Germany, France, Netherlands, and Great Britain (refer to Table
1).
Node B vs k exhibits a power law relationship, where

connected nodes are much more likely to play a crucial role in
the network architecture. This relationship is present for both the
undirected and directed network (refer to Figure 3A and SI,

Figure 3. Relationship between node betweenness centrality (B) and node degree (k) for food flows in the USA. (A) Both undirected and directed B
display a power law relationship with k. (B) A core group of nodes is evident for directed B. The core nodes are “Los Angeles-Long Beach-Riverside”
(LLR), “Chicago-Naperville-Michigan City” (CNM), “Remainder of Texas” (RT), “Remainder of Pennsylvania” (RP), “NewYork-Newark-Bridgeport”
(NNB), “Iowa” (IOWA), “Remainder of California” (RC), “Remainder of Wisconsin” (RW), and “Atlanta-Sandy Springs-Gainesville” (ASG).
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Table S4). Such a highly nonlinear relationship between B and k
suggests the presence of a network “core”, much like in the global
trade system,3 making the network particularly vulnerable to
failure.54,55

To identify the nodes that belong to the network core, we plot
k against B in Figure 3B. A core group of nodes is evident only for
directed B. In other words, nodes with high directed B also tend
to be network hubs, that is, those with the largest degree. The
core nodes are “Los Angeles-Long Beach-Riverside”, “Chicago-
Naperville-Michigan City”, “Remainder of Texas”, “Remainder
of Pennsylvania”, “New York-Newark-Bridgeport”, “Iowa”,
“Remainder of California”, “Remainder of Wisconsin”, and
“Atlanta-Sandy Springs-Gainesville”. Because of the prominent
role that these nodes play in the network architecture, their
removal may disturb the movement of food throughout the USA.
Thus, the USA food flow network may be vulnerable to the
removal of key nodes.
3.6. Triad Analysis. The triad significance profile (TSP) of

global food trade recently revealed a unique “superfamily” when
compared with existing networks (refer to ref 32 for comparisons
of TSPs of many real-word networks). The global food trade TSP
revealed properties of both biological and human social
networks. The TSP for global food trade indicates an abundance
of triad type “13” (i.e., “motif”) and lack of triad type “6” (i.e.,
“antimotif”), the hallmark of human social systems (refer to
Figure 4 for triad diagrams). The TSP of global food trade also
presented an abundance of triad types “9” and “10”, indicators of
biological networks.41,32 Since global food trade exhibits
topological characteristics of both biological and human
networks, it is not surprising that the TSP of global food trade
displays a combination of these network types.32

We present the triad analysis for domestic food flows in the
USA in Figure 4. The overall TSP structure compares well with
that for global trade of food. However, the USA food trade
network exhibits even stronger signals of a human social network
than does global food trade (note that triad type “13” is more
prevalent and triad type ‘6’ is less prevalent in Figure 4B and
Table 1). Thus, trade connections within the USA are highly
social, more so than global trade patterns.

3.7. Equality Analysis. Trade inequality is an important
topic in the literature.33 In this section we compare statistics on
global trade inequality with measures within the USA. We
assume that food flows within the USA approximate the most
equitable distribution that international trade may be expected to
achieve. We make this assumption because characteristics
important to trade (i.e., wealth, population, resources, politics,
etc.) are relatively homogeneous across CFS areas in the USA as
compared to the high heterogeneity across countries in the global
trade system. Thus, our analysis here serves as a benchmark for
comparison for global trade equity.
Conceptually, trade equality refers to the situation in which all

trade partners exchange the same volumes of food. Quantita-
tively, we employ the Gini coefficient (G), Lorenz coefficient (S),
and Hoover index (D) to measure trade equality. Table 1
presents the equality coefficients for food flows across the USA
and at the global scale, as measured in ref 33. For the USA, G =
0.579, indicating a more equitable distribution of food flows than
at the global level (where G = 0.626). The Lorenz curve
asymmetry coefficient is essentially symmetric for domestic food
flows, since S = 0.97. D for USA food trade is 0.442, indicating
that some trade would need to be redistributed to achieve perfect
equality, although not as much as at the global level, in which half
would need to be redistributed.
The USA cereal trade scores the lowest across equality metrics

(i.e., G = 0.908, S = 0.966, and D = 0.442; refer to SI, Table S8)
due to high heterogeneity of flows. However, the cereal trade also
exhibits the largest exponent in the power law relationship
between s and k, indicating that cereal trade may be a key method
for improving food security. Thus, these differences in the cereal
trade highlight the important trade-off between efficiency and
equity in a system. This analysis of domestic food flows raises the
question of whether perfect equality is possible or even desirable
within a trade system.
The world food system has become increasingly complex and

interconnected, particularly due to food trade. The international
trade of food commodities has been previously studied using the
tools of network analysis.11,3,32 In this paper, we presented a
novel application of network theory to data on food flows within
a single country: the USA, a key nation in the global food
network, since it is a major agricultural producer, consumer, and
trade power. This analysis provides a useful benchmark for
network properties across scales of trade, within a free trade
setting, and for a relatively equitable case study. As expected, the
USA food flow network is more equitable than global food trade.
However, even food flows within the USA are not perfectly
equitable and present a potential bound for how equitable global
food trade can realistically be expected to be.
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Figure 4. Triad significant profiles (TSPs) for food flows. (A) TSP for
global food flows, as presented in ref 32; (B) TSP for food flows within
the USA. The general structure of the triad significance profile is
retained for domestic food flows. However, the USA food flow network
exhibits more characteristics of a social network than does global food
trade (i.e., antimotif 6 and motif 13 are more pronounced in panel B;
values provided in Table 1) .
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