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Abstract
Food consumption andproduction are separated in space throughflowsof food along complex supply
chains. These food supply chains are critical to our food security,making it important to evaluate them.
However, detailed spatial informationon foodflowswithin countries is rare. The goal of this paper is to
estimate foodflows between all county pairswithin theUnited States. Todo this,wedevelop the Food
FlowModel, a data-drivenmethodology to estimate spatially explicit foodflows. The FoodFlowModel
integratesmachine learning, network properties, production and consumption statistics,mass balance
constraints, and linear programming. Specifically,wedownscale empirical informationon foodflows
between132FreightAnalysis Framework locations (17 292 potential links) to the 3142 counties and
county-equivalents of theUnited States (9869 022potential links). Subnational foodflowestimates can
be used in futurework to improve our understandingof vulnerabilitieswithin a national food supply
chain, determine critical infrastructures, and enable spatially detailed footprint assessments.

1. Introduction

Most food security research focuses on increasing
production(Lobell et al 2011, Long et al 2015, Liang
et al 2017), but distribution through complex supply
chains is also critical to food security(Ercsey-Ravasz
et al 2012, Konar et al 2018). Food supply chains are
increasingly complex and global in scope, incorporat-
ing the production, distribution, and consumption of
food commodities(Porkka et al 2013, MacDonald
et al 2015). Here, we refer to the movement of food
through complex supply chains within a country as
‘food flows’, reserving the term ‘food trade’ for
the international trade of food commodities. Food
flow networks depend on many factors, such as
production locations, population centers, storage and
transport infrastructure, and socio-political factors
(Venkatramanan et al 2017). It is increasingly impor-
tant to evaluate food flow networks, since these
coupled human-natural systems can have dramatic
implications for the environment and underpin our
food security(Dalin and Rodriguez-Iturbe 2016, See-
kell et al 2017). Spatially detailed food flow estimates
would improve our understanding of food supply

chain vulnerabilities and enable spatially detailed
footprint assessments. However, we know relatively
little about food flows due to a sparsity of data, with
the exception of international food trade. The goal of
this paper is to estimate food flows between all county
pairs within theUnited States.

The United States is a key country in the global
food system(Xu et al 2011). The US produces over
30% of the world’s corn and over 50% of the world’s
soybeans(USDA2013). TheUS also accounts for large
shares of the world export market for several staples:
about 60% for corn, 40% for soybeans, 25% for wheat,
and 70% for sorghum(USDA 2013), making the US
an important contributor to global grain suppli-
es(FAO 2013). The ability to grow and transport agri-
cultural products enables the US to provide both
domestic and global food security(Lin et al 2014). The
US is able to maintain its role as a key agricultural
producer, consumer, and trade power largely due
to its supporting institutions (e.g. agricultural sub-
sidies, crop insurance, etc) and infrastructure (e.g. irri-
gation systems, food distribution infrastructure, etc)
(Deryugina and Konar 2017, Marston et al 2018,
Rushforth and Ruddell 2018). Supply chains in the US
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are also responsible for a large national carbon(Weber
and Matthews 2008, Cuéllar and Webber 2010, Liang
et al 2016), water(Dang et al 2015, Vora et al 2017,
Wang et al 2017), and chemical pollution foot-
print(Nesheim et al 2015).

Data on subnational food flows is available within
the United States at a coarse spatial resolution. This
availability of subnational food flow information is a
major reason for our selection of the US for this work.
The US Census Bureau and the Bureau of Transporta-
tion Statistics produce the Commodity Flow Survey
(CFS) every five years (ending in ‘2’ and ‘7’). The CFS
provides data on the movement of commodities in the
United States, including their value, weight, andmode
of transportation, as well as the origin and destination
of shipments frommanufacturing, mining, wholesale,
and selected retail and services establishments. The
Freight Analysis Framework (FAF) builds on the CFS
data to provide data on freight movement between the
132 FAF zones of the US (see figure 1(A))(Oak Ridge
National Laboratory 2015). FAF reports flows of
coarse food commodity classes (see table 1). This cen-
sus information on food flows within the US has been
used to evaluate their vulnerabilities at a relatively
coarse spatial scale(Lin et al 2014). Spatially refined
food flows would enable future research to better
understand the potential vulnerabilities and resi-
liencies within the US food supply chain, and would
advance lifecycle and footprint assessments.

Our work contributes to the recent literature
thatmodels food flows. A few recent papers havemod-
eled spatially detailed food flows(Smith et al 2017,
Venkatramanan et al 2017). Venkatramanan et al
(2017) present a data-driven approach to estimate
food flows between markets in Nepal in order to eval-
uate their propensity to spread pests. Smith et al (2017)
use a transportation optimization model to estimate
corn flows between US counties. Our approach is rela-
ted but distinct. As in the existing literature, we use
food production and consumption statistics in con-
junction with a linear programming framework that
minimizes transport distance. In this paper, we add
some novel elements to the food modeling literature.
First, we constrain our food flows to have the same

Figure 1.Maps of political boundaries within theUnited States. (A)Mapof FAF zones. (B)Mapof the counties of theUnited States.

Table 1. List of standard classification of transported goods (SCTG)
food categories included in this study.

SCTG Model

1 Animals and fish (live)
2 Cereal grains (includes seed)
3 Agricultural products (excludes animal feed, cereal grains,

and forage products)
4 Animal feed, eggs, honey, and other products of animal

origin

5 Meat, poultry,fish, seafood, and their preparations

6 Milled grain products and preparations, and bakery

products

7 Other prepared foodstuffs, fats and oils
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network properties as those of the observed food flow
networks(Konar et al 2018). Recent research has
shown that global, subnational, and village scale food
flow networks share structural properties, including
a gamma mass flux distribution(Konar et al 2018).
Second, we incorporate the principle of mass balance
in our model. We do this by requiring that the food
flows from counties within an FAF zone sum to the
food flows from that FAF zone. Both of these novel
aspects enhance the realism of our approach.

The goal of this paper is to estimate food flows
between all counties and county equivalents in the
United States. There are 3142 counties and county
equivalents in theUnited States: 3007 counties, 64 par-
ishes, 19 organized boroughs, 10 census areas, 41 inde-
pendent cities, and the District of Columbia. For the
rest of this paper, we refer to these ‘counties and
county equivalents’ simply as ‘counties’ for short. The
major question that we address is: what are the food
flows between counties within the United States? To
answer this question, we develop the Food Flow
Model, a novel, data-driven framework to estimate
food flows in locations without empirical data. We
detail our methods in section 2.We discuss our results
in section 3.We conclude in section 4.

2.Methods

We develop a novel methodology to estimate food
transfers between counties in the United States. To do
this, we downscale data on food transfers at the FAF
zone spatial scale (refer to figure 1(A)) to counties
within the United States (refer to figure 1(B)). From
figure 1 it is clear that our goal requires the estimation

of flows at amuch finer spatial resolution (i.e. between
all 3142 county pairs) than that for which information
is available (i.e. between 132 FAF zones). Since the
number of directed paths is determined by (n)(n−1),
this means that our goal requires that we move from a
system with 17 292 potential links (n=132 at FAF
zone scale) to estimating 9869 022 potential links
(n=3142 at county scale). As such, flow estimation
quickly increases in complexity and computational
demands as the number of nodes increases. In this
way, our problem is distinct to most other spatial
downscaling problems, in which a coarse spatial value
is assigned to entities within its domain (see
figure 2(A)). Instead, we want to downscale flows,
which requires estimating values (including zeros)
between all node pairs (i.e. links) in our system.
Figure 2 presents a conceptual framing of this
challenge.

To achieve our goal, we develop the Food Flow
Model, a computational algorithm that integrates
machine learning, linear programming, network con-
straints, and mass balance (see figure 3 for a schematic
of our modeling approach). We incorporate known
properties of food flow networks at different spatial
scales(Konar et al 2018) through the development of a
gamma mixture hurdle model. This approach ensures
that estimated mass fluxes follow a gamma distribu-
tion as in empirical networks (e.g. see Konar et al
2018).We use supervised learning (amachine learning
technique) to establish a gamma mixture hurdle
model at the FAF spatial scale and then use it to esti-
mate food flow potentials between counties. This
approach incorporates statistical information on crop,
livestock, and other economic factors of production at

Figure 2.Conceptual schematic of the problem statement. The goal of the Food FlowModel is to downscale spatial flowdata. This is
more complex than traditional spatial downscaling (A), which typically aims to estimate attributes of sub-entities within a larger
entity. Now, we aim to estimate connections andmass transfers between all node pairs (B). There aremanymore node pairs than
spatial units, because the number of node pairs (i.e. links) scales as n*(n−1), where n is the number of spatial units.
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the county spatial scale. In this way, our approach
maintains realism, since food transfers are assigned to
links only if the food is produced and consumed in
those locations. Note that here ‘consumption’ refers to
commodity transformation such as food processing,
livestock feed, biofuel conversion, or another inter-
mediate step in the supply chain of different goods,
which means that both intermediate and final con-
sumption are included. Then, we use data on food
transfers at the FAF spatial resolution to constrain our
county scale estimates. This provides a mass balance
constraint to our approach. Finally, the Food Flow
Model incorporates linear programming to solve the
system through the minimization of the transport dis-
tance between counties. We detail our data sources
and algorithmbelow.

2.1. Input data
We obtain twomajor types of data for this study. First,
we obtain data on agricultural and food commodity
transfers between FAF zones in the United States. The
Freight Analysis Framework Version 4 (FAF4) data-
base provides empirical agricultural and food com-
modity transfers between FAF zones for the year
2012(Oak Ridge National Laboratory 2015). Second,
we obtain statistical information on economic pro-
duction within each US county. We obtain county-
level production data for the year 2012 tomatch FAF4.
All data sources are detailed in table 2.

The FAF4 dataset utilizes data from numerous sour-
ces to provide an exhaustive description of subnational
freight movement in the United States, as well as trade
with major international regions. The CFS is founda-
tional to the FAF4 dataset. Every five years (years ending
in ‘2’ and ‘7’), the CFS samplesmore than 100,000 estab-
lishments that ship freight domestically. Survey respon-
ses are aggregated to the corresponding FAF zone,
commodity class, and across the 4 quarterly surveys
administered during the year of record to protect the
confidentiality of survey respondents. Freight shipments
within the CFS and FAF dataset are grouped into 42 clas-
ses using the two-digit standard classification of

transported goods (SCTG). Here, we are primarily inter-
ested in agriculture and food goods, which are repre-
sented by SCTG 01-07 (table 1). We use the FAF4
commodity transfer database as training data for a super-
vised learning algorithm to determine the functional
formof regressionmodels of food transfers between FAF
zones that are then applied to the county spatial scale (see
the following section for more details). This approach
assumes that the regression model is consistent across
spatial scales. The FAF4 data is also used to constrain
transfers within our county-to-county Food Flow
Model.Weutilize the principle ofmass balance to ensure
that counties located within an FAF zone do not exceed
themassflux reported at the FAF spatial scale.

Distance between all county pairs was obtained
fromOak Ridge National Laboratory (2011) and repre-
sents the great-circle distance between county cen-
troids. To determine the great-circle distance county
centroids (latitude, longitude) are first established.
Then, the central angle of each centroid is determined.
Finally, the great-circle distance is calculated by multi-
plying the Earth radius and the central angle. So, the
distance is projected on the Earth sphere plane Oak
Ridge National Laboratory (2011). The great-circle dis-
tance is the most commonly used distance measure in
the large literature on the gravitymodel of international
trade(Disdier and Head 2008). Even though great-cir-
cle distance is a simplification of transport pathways,
the gravity model of international trade does not per-
form better when the actual geography of transporta-
tion is used(Disdier andHead 2008).

The likelihood andmassflux of food transfers origi-
nating froma county is related to its production of these
goods. County level production ($) for unprocessed
agricultural commodities (SCTG 1-4) come from US
Department ofAgriculture (2014). Production values of
each crop or livestock category originating within a
county were aggregated to their corresponding SCTG
code. Similarly, the county level production of pro-
cessed agricultural and food goods (SCTG 5-7) were
aggregated to their respective SCTG code as described
below. Production data of processed agricultural goods

Figure 3. Schematic of the Food FlowModel.
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originating from a specific NAICS food processing
industry comes fromUSCensusBureau (2015a).

Other statistical information is required to deter-
mine the destination of food flows. The 2012 CFS Pub-
lic Use Microdata(US Census Bureau 2015b) and the
United States Bureau of Economic Analysis input–out-
put accounts data(US Bureau of Economic Analysis
2014) were used to statistically determine the produc-
tion and attraction of foodwithin ourmachine learning
algorithm (see below). The CFS Microdata utilizes the

same survey data as theCFS dataset but provides greater
shipment detail than the standard CFS data. Impor-
tantly, one additional detail included in the CFSMicro-
data is the North American Industry Classification
System (NAICS) code of the industry producing and
shipping the good. This additional information enables
us to relate the SCTG code of a transported commodity
to the NAICS industry producing the commodity.
Since the CFS Microdata does not provide a NAICS
code for raw agricultural and food goods (SCTG01-04),

Table 2. List of data sources used in this study.

Name References Data description Purpose

Commodity Flow Survey

(CFS)PublicUse
Microdata

USCensus Bureau

(2015b)
Survey of business shipments within the

United States. FAF is largely based off

this dataset, though the scope of the

CFSMicrodata is not as broad as that

of the FAF dataset.However, theCFS

Microdata contains greater shipment

detail, including theNAICS industry

responsible for the shipment.

This dataset allowed for pairing of com-

modity transfers to specific industries.

Freight Analysis Frame-

work (FAF)Version 4
OakRidgeNational

Laboratory (2015)
Data detailing freightmovement

between 132majormetropolitan

areas and remainder of states (i.e.
FAFZones), as well as eight interna-
tional import/export regions.

FAF commodity transfers are used to

constrain county transfers. The sum

of county transfersmust equal that of

the FAFZone that they belong.

USCensus Bureau 2012

Economic Census

USCensus Bureau

(2015a)
Provides county level economic data by

industry, including employment and

the value of industry output.

The EconomicCensuswas used to deter-

mine production of processed agri-

cultural goods and the total

production output of all industries

using agricultural goods as produc-

tion inputs. These datawere used in

our gammamixture hurdlemodel for

link prediction and assigning flow

strength.

USDepartment of Agri-

culture 2012Census

of Agriculture

USDepartment of

Agriculture (2014)
Agricultural production data for each

crop or livestock type at the county

scale.

TheCensus of Agriculture was used to

determine county level production

values for each crop and livestock.

These datawere used in our gamma

mixture hurdlemodel for link predic-

tion and assigning flow strength.

Input–Output (I–O)
AccountsData

US Bureau of

Economic

Analysis (2014)

These data detail supply chain input

requirements for each industry per

unit of their output.

Direct requirement coefficients from the

I-O accounts weremultiplied by pro-

duction data to determine the com-

modity input requirements of each

industry, as well as end consumers. A

county’s total input requirement of a

commodity across all industries and

end consumers represents its total

consumption of that good. This is

used in our gammamixture hurdle

model for link prediction and assign-

ingflow strength.

County-to-County

DistanceMatrix and

Network Impedance

OakRidgeNational

Laboratory (2011)
Matrix of distances and impedances

between county centroids via

different transportationmethods.

The linear programming algorithmused

thismatrix tominimize transporta-

tion cost.

Personal Income USBureau of

Economic

Analysis (2017)

Personal income data per county. When pairedwith the input–output data

tables, this was used to help determine

final consumer demand of different

commodities within a county.

Port Trade USCensus

Bureau (2018)
Value ($) andmass (kg) trade data for

international ports of theUnited

States.

Trade data to/from these ports was used

to better capture transit hubs in the

gammamixturemodel.
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we manually matched the production of individual
crops or livestock reported by US Department of Agri-
culture (2014) to the SCTG code to which it belongs
(a listing of goods within each SCTG can be found
at https://census.gov/econ/cfs/2012/2012_manual.
pdf). The SCTG-NAICS crosswalk table we created
(provided in the online supporting information (SI)
available at) stacks.iop.org/ERL/14/084011/mmedia
was paired with input–output accounts data to deter-
mine an industry’s use of each SCTG as input in its pro-
duction process. Input–output tables show to what
degree the production (output) of one industry is used
as input to another industry. Using the crosswalk table
we created, we aggregate industry output within the
table to its corresponding SCTG code to match the
FAF4 data set. This procedure allows us to restrict data
used within our machine learning algorithm to vari-
ables that have been established as relevant to the pro-
duction or consumption of each SCTG good. This
ensures that ourmodelmaintains realism.

Some agricultural(US Department of Agriculture
2014) and business production data(US Census
Bureau 2015a) are suppressed by the data collecting
agency if their releasemay reveal information on an indi-
vidual producer. Suppressed data records are not
removed from the data set, but instead flagged, indicat-
ing there are limited producers within that geographical
area. Data suppression is more prevalent at the county
spatial scale and among specialty producers. For exam-
ple, artichoke (a specialty crop) production in Linn
County, Oregon is flagged since reporting this data
would reveal information specific to the only artichoke
farmer in the county. When suppressed values arise in
the data sets, the geographical and industry/product
hierarchical structure of the data is exploited to estimate
these suppressed values. The artichoke production of the
sole farmer in Linn County, for example, was estimated
by subtracting the sum of all artichoke production in
Oregon counties from the state-level production value
provided by US Department of Agriculture (2014). The
difference between the state total and the sum of all
counties is uniformly distributed amongst all Oregon
countieswith suppressed artichokeproduction records.

Industrial production records have other data fields
that can help us further refine our estimates of sup-
pressed production values. US Census Bureau (2015a)
provides employment records for each industry within a
county, which can be used to help estimate suppressed
production output. Employment data is not used
directly within our model. Instead, it is used to estimate
the production output (which is used within our model
as an input) when this production data has been sup-
pressed. Employment data is more widely reported and
is not subject to as strict data suppression requirements
as production data. For each industry, we exploited the
numerous instanceswhen both production and employ-
ment data existed to establish coefficients relating the
number of employees working within an industry to the
production of that industry. These industry-specific

coefficients were applied to employment records to esti-
mate production when production data was suppressed
within a given county. Relationships between produc-
tion output and employment were established for every
industry based on the large number of records where
both values were provided. This allowed us to estimate
production for counties with limited industrial activity.
While similar approaches have been applied in the litera-
ture(Isserman and Westervelt 2006, Smith et al 2017,
Marston et al 2018), our studywould nonetheless benefit
froma complete data set.

Port trade data is retrieved from the Census Bureau
USA Trade database (https://usatrade.census.gov/
index.php) for the year 2012. The values ($) and mass
(kg) for both sea and air ports are provided (US Census
Bureau 2018). Value flows were ultimately used due to
significantly more data availability as compared to
mass. While land ports are not specifically mentioned,
many of the reported ports are USCustoms and Border
Patrol crossings on US land borders (such as along the
Northern borders of North Dakota and Montana),
implying that land ports are included in the database.
Commodities in the port trade database are reported
using the HS coding system. For consistency with FAF
flow data, a crosswalk was created to convert from HS
to SCTG codes. The Python geocoder library (http://
geocoder.readthedocs.io/) was then used to determine
latitude and longitude coordinates for each port. Some
ports, such as ‘LowValue (Port)’, did not have locations
and were consequently removed. A spatial join was
finally used to determine which county each port is in,
resulting in 331 ports in 228 counties contributing
inflows and outflows of SCTGs 1 through 7 in the US.
We use this port data in our algorithm (see section 2.2)
to boost fluxes to/from transit hubs that do not directly
correspond to production/consumptionflows.

2.2. The Food FlowModel
We develop the Food Flow Model to estimate food
flows between counties in the United States. Our goal is
to estimate F, which is aweighted anddirectedmatrix of
food flows between all county pairs (i.e. for all 9869 022
potential linkswithin thenation).Fprovidesflows from
anorigin (o) to a destination (d) county.

Figure 3 provides a schematic of our algorithm.Our
approach is based on supervised-learning and linear
programming methods with mass balance and com-
modity network properties as constraints. Our algo-
rithm is comprised of three main steps. Step 1: train a
gamma mixture hurdle model for food commodity
flows between FAF zones. Refer to the SI for the list of
variables used in our training algorithm. Step 2: simu-
late the commodity flow potentials between counties
using the model obtained in Step 1. Step 3: use linear
programming to minimize the distance of food flows
between counties. The major assumption employed in
ourmodeling framework is that the supervised learning
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model established forflows between FAF zones is repre-
sentative offlowsbetween counties.

2.2.1. Step 1: develop gamma mixture hurdle model at
FAF scale
In step 1, we train a gamma mixture hurdle model for
commodity flows between FAF zones. A hurdle model
is a two-partmodel inwhich one process is specified for
zeros and another process for positive values. The idea
is that positive values occur once a hurdle is cleared.
Our hurdle model uses logistic regression to predict the
presence or absence of a link (i.e. to determine the
binary adjacency matrix (A) corresponding to F) and a
gamma mixture model to estimate the mass of existing
links (i.e. to assign values to the ‘1s’ in A and obtain the
weighted F matrix). So, our gamma mixture hurdle
model is composed of two major components: (i) a
logistic regression model for link topology (i.e. the A
matrix) and (ii) a gamma mixture model for flow
strength (i.e. theFmatrix).

(i) Logistic regression model: food flow networks
exhibit connectivity distributions that follow the general-
ized exponential-binomial distribution across sca-
les(Konar et al 2018). This indicates that link generation
can be modeled as a two-step process. First, the prob-
ability (p) is sampled from a prior generalized exponen-
tial distribution. Second, a coin is flipped to obtain a
value. If the flipped value is greater than p then a connec-
tion is made between an origin and destination node.
However, the generalized exponential prior distribution
does not provide enough restriction to estimate the pre-
sence or absence of all links in our system. So, logistic
regression can be used to take additional geographic and
economic features of the counties into account.

We use the binary logistic regression model to esti-
mate the probability of a binary response based on avail-
able predictor (or independent) variables(Cox 1958,
Walker and Duncan 1967). In binary logistic regression,
the outcome is coded as ‘0’ or ‘1’. Here, an outcome of ‘0’
indicates that no link is present between twonodes,while
an outcome of ‘1’ indicates that a link exists. We use
supervised learning to determine the functional form of
the logisticmodel for each SCTG food group. Supervised
learning is a machine learning task to learn the function
that maps an input to an output. This learning process
infers a function from training data(Mohri et al 2012).
Here,weuse the available FAF zone foodflowdata as our
training data set.Weuse link-level FAF foodflowdata, so
17 292 data points are available in our training data set.
Using supervised learning, a logistic regression model is
established for each SCTG food commodity group. The
logistic regression model for each SCTG group is pro-
vided in the SI. So, the logistic regression model deter-
mines the presence or absence of a food flow link. If a
food flow link is predicted to exist, then the ‘hurdle’ has
been cleared. Once the hurdle has been cleared, then we
use a gamma regression model (part (ii)) to estimate the
mass transfer on that link. In this way, the logistic regres-
sion model determines if the ‘hurdle’ has been passed

and the gamma regressionmodel will only proceed after
getting apositive result from the logistic regression.

The area under the curve (AUC) metric with ten-
fold cross-validation is used to evaluate model perfor-
mance. AUC measures the entire two-dimensional
area below the receiver operating characteristic (ROC)
curve from (0, 0) to (1, 1). AUC provides an aggregate
measure of performance across all possible classifica-
tion thresholds. AUC is desirable because it is scale-
invariant and classification-threshold-invariant. It
measures howwell predictions are ranked, rather than
their absolute values. Additionally, AUCmeasures the
quality of the model’s predictions irrespective of what
classification threshold is chosen. AUC values range
from 0 to 1. A model whose predictions are 100%
wrong has an AUC of 0.0; one whose predictions are
100% correct has an AUC of 1.0. A score of 0.5 is no
better than random chance. There is a tradeoff
between precision and overfitting. A score of 0.9 indi-
cates a very good model, but a score of 0.9999 may be
too good to be true and will indicate overfitting. AUC
metrics are provided in the SI and are within the range
of 0.78–0.93 across commodity categories.

(ii) Gamma mixture model: food mass flux dis-
tributions follow the gamma distribution across sca-
les(Konar et al 2018). The gamma distribution is
generated from the homogeneous Poisson process
with a constant rate of success(Boland 2007). For this
reason, the commodity flow process can be modeled
using a Poisson process. Conceptually, this implies
that food commodities will be transported from the
origin to the destination until k (shape of gamma dis-
tribution) effective units of the food commodity are
delivered. To understand this ‘effectiveness’, we can
consider the example of animal feed. A feed manu-
facturer needs to produce a certain amount of feed
containing k units of corn. The origin ships corn, but
not all corn ends up in the feed. Some corn might be
lost during transport, some corn might be sent to
othermanufacturing plants or used for other purposes
besides feed, and some corn might be re-exported. So,
the corn that finally reaches the feed manufacturer is
only a fraction, and this fraction is the success rate.
Here, we approximate this success rate as a constant
within each food commodity category. The gamma
regression model for each SCTG group is provided in
the SI.

For most food commodity groups about 5% of the
flows exceed the upper bound of the 95% confidence
interval of our gamma regression model. These out-
liers correspond to major transportation hubs within
the US (e.g. ports). These outliers lead us to consider
transit hubs as an additional attribute for some key
nodes. We use the port trade data from the Census
Bureau USA Trade database for these hubs (see
section 2.1 and table 2). The same process is employed
to generate the second gamma model. In this way, we
develop a gamma mixture model(Llordén 2017). In
our gamma mixture model, there are two gamma
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regression models with different feature spaces. So,
our gammamixture hurdle model combines (i) super-
vised learning to established a logistic regression
model for link prediction and (ii) a gamma mixture
model to estimate the mass of estimated links, taking
transit hubs into account.

2.2.2. Step 2: simulate commodity flow potentials
between counties
In step 2, we simulate the commodity flow potentials
between counties given the model developed for FAF
flows in step 1. The logistic regression model devel-
oped for each SCTG food commodity is used to decide
the topology of food flows at county level. If the
probability is greater than the selected threshold, a link
is assigned. Next, the mass flux of food flows is
estimated for existing links. Gamma regression (with-
out total importing information of international
ports) is used to estimate the expected value of the food
flows between counties.We generate flow potentials as
random variables sampled from a gamma distribution
with the expected values of these food flows as the scale
of the gammamodel. If there exists potentials between
FAF zones summing to a value smaller than reported
flow between these FAF zones, the gamma regression
with total importing information of international
ports is used to re-estimate the expected values
between these counties. If the total of flows among
counties between FAF zones are still smaller than the
reported value, scaling is used.

2.2.3. Step 3: solve systemwith linear programming
In step 3, we apply a linear programming process to
solve the system. Our linear program takes the flows
between FAF zones as mass balance constrains and the
potentials estimated in step 2 as inequality constraints.
Then, the linear program minimizes the transporta-
tion distance of food flows between counties
(Klein 1967, Ahuja et al 1993). Given the network
topology and flow potentials estimated in steps 1 and
2, we estimate the flows between counties with
minimization of distance as the objective function and
flow values reported at FAF level as equality con-
straints. In step 2, we guaranteed that the sum of the
flow potentials among counties within an FAF zone is
always greater than or equal to the corresponding FAF
zone flows. So, there is always a solution to this linear
programming problem.

The solution to our linear programming system
minimizes transport distance while ensuringmass bal-
ance between counties modeled within an FAF zone.
In this way, our approach builds on the gravity model
of trade in which distance (which typically correlates
with costs) is inversely related to trade flows(Disdier
and Head 2008). Note that our model framework is
not as strongly influenced by the distance minimiza-
tion assumption asmany other studies (e.g. Smith et al
2017) that rely on this assumption since our model is
additionally bounded by the FAF data.

Note that the Food Flow Model estimates self
loops at the county scale. This is because self loops
exist in the FAF data. For example, the remainder of
California reports a flow to the remainder of Cali-
fornia, such that the remainder of California is both
the origin and destination of theflow.

2.3. Global sensitivity and uncertainty analysis
A global sensitivity and uncertainty analysis (GSUA)
can help to determine the variables that are most
influential in model output(Saltelli et al 2004, Ludtke
et al 2007, Convertino et al 2014, Servadio and
Convertino 2018). Here, we implement the Fourier
amplitude sensitivity test (FAST) method to calculate
the contribution of each input variable to the output
variance(Cukier et al 1973, Saltelli et al 1999). The
main advantage of the FASTmethod is that it is robust
for relatively small sample sizes(Cukier et al 1973).
Additionally, the FAST method is computationally
efficient(Saltelli et al1999).GSUAmethodsmay require
a pre-screening method, such as the Morris method, to
reduce the number of variables(Convertino et al 2014,
Servadio andConvertino 2018). However, here, we have
a relatively small number of variables, so we do not
require a pre-screening and are able to directly perform
GSUAwith FAST.

The ‘first-order index’, as named in Sobol’s
method,measures the contribution of input X alone to
the output variance. In this metric, no impact through
interaction is considered. For example, in a system
= +y x x x3 1 1 2, the first-order sensitivity of x1 only

considers the effect of 3x1 and ( )x E x1 2 , where x2 has
been averaged out. In comparison, the ‘total-order
index’ of x1, measures the contribution of input var-
iance to the output variance, including all variance
caused by its interactions, of any order, with any other
input variables(Homma and Saltelli 1996). So, the
effect of all the group of variables that contain x1,
would consider impact of both 3x1 and x x1 2.

First, we fit a lognormal probability distribution
function (PDF) to each input variable. There are two
main reasons for fitting the input variables with the
lognormal distribution: (1) all input variables are
highly right skewed. It is common practice to log
transform right skewed data before regression. (2) In
the trade economics literature, the gravity model of
trade is a prevalent empirical model to describe trade
systems. The gravity model of trade log transforms the
input variables. The functional form of the Food Flow
Model regression models are based upon the gravity
model and so using the lognormal distribution enables
our approach to be compared with the gravity model
literature.

The lognormal PDF fit is provided in the SI. Note
that the mean of the lognormal distribution is some-
time negative, despite the fact that input variables to
lognormal are always Î ¥[ )0, . This is because when
the input variable is<1, then log of x will be negative.
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This indicates that after the input data go through log
transformation, the resulting mean is negative, or that
there are many values less than 1. In some instances,
this may be due to counties that do not have data,
where we replace zerowith 0.1−100, so that it can be log
transformed. Notice that sometimes the same variable
for different SCTGs have different PDFs because they
represent different commodities (e.g. vegetable versus
grains).

For GSUA, the input random variables are
assumed to follow the lognormal distribution. The
minimum and maximum value of each random vari-
able are taken as bounds. The simulation iterations are
increased by 1000 until the total-order index’s change
between the previous and current session is within 5%
for any variable factor.

3. Results and discussion

There are 132 nodes in the FAF census data and 3132
nodes in the county model results (see table 3). So, we
do not model 10 of the 3142 counties in the United
States due to limited data for these counties (refer to
the SI for a list of these counties). There are 11 678
links in the FAF data out of a potential 17 292 links,
leading to a density of 0.675. The Food Flow Model
estimates 161 394 non-zero links at the county scale
out of a potential 9869 022 links. This means that the
density of the county scale food flows is 0.016. The
inferred network density at the county scale is much
less than the empirical density at the FAF scale.
However, it makes sense that the density at the county
scale is lower than the FAF scale, since this finer spatial
resolution makes it unlikely that most counties would
connect with one another directly and would instead
transit through hubs. Of importance, note that the
mass balances for each SCTG commodity class
between the county and FAF spatial scales as required
(see table 3).

3.1. County-scale foodflows
Figure 4 maps food inflows and outflows at the FAF
and county spatial scales. The spatial trends compare
well between FAF and county spatial scales. For
example, note that California and the Great Lakes
region aremajor outflow locations in the FAF data (see
figure 4(B)). Counties within these FAF areas are also
locations of high food outflow in the nation (see
figure 4(D)). Similarly, the counties that are estimated
to receive the most inflows of food correspond to the
locations of FAF zones with high food receipts
(compare figure 4(A) with figure 4(C)). This indicates
that the Food Flow Model is maintaining the broad
spatial trends observed at the FAF spatial scale as
designed. Note that the mass transfer at each scale is
different, as indicated by different scales on the color
bars. The masses being transferred at the county scale
are smaller than at the FAF level, because the mass at

the FAF level has been distributed to counties, and we
do not expect a single county within an FAF zone to
transfer the entirety of the foodmass. However, we are
now able to infer how food flows are distributed across
counties, which we are not able to observe at the FAF
scale.

Table 4 ranks the top outflow and inflow locations
by spatial scale. Our model estimates that several Cali-
fornia counties are the largest in terms of outflows and
inflows. For example, Los Angeles county is predicted
to be the largest origin and destination node at the
county scale, despite the fact that the remainder of
Iowa FAF zone is the largest origin and destination
node at the FAF scale (refer to table 4). This indicates
that the large remainder of Iowa link is more evenly
distributed amongst the counties within Iowa, while
the mass flux within the state of California is dis-
tributed in a fairly heterogeneous manner amongst its
counties. This is because of the high heterogeneity in
production and consumption within California. This
is also a function of the linear programming algorithm
that minimizes distance. Distances between counties
in northern and southern California are larger than
distances across the state of Iowa, for example. Our
model estimates more local flows in California since
the linear program objective function enacts a heavy
penalty for transporting food large distances within
the state. Additionally, counties in the western portion
of the United States, including California, are larger
than counties in the east, which also leads to more
aggregation at the county spatial scale.

Figure 5 maps food flows at the FAF and county
spatial scales. Links are shown for all FAF flows and for
the largest 5% of county estimates. These maps depict

Table 3.Network properties of food flowswithin theUnited States.
Properties are provided for each SCTG group at the FAF and county
spatial resolution. Themassflux of FAF scale self loops are included,
as thismass is distributed amongst counties within those FAF zones.

FAF

SCTG #Nodes # Links Mass (kg) Density

1 132 1454 89.35E+9 0.085

2 132 1441 789.16E+9 0.083

3 132 4535 397.51E+9 0.262

4 132 3491 258.60E+9 0.201

5 132 4681 76.76E+9 0.271

6 132 4762 101.42E+9 0.275

7 132 8924 559.00E+9 0.516

Total 132 11 678 2.27E+12 0.675

County

1 2945 14 474 89.35E+9 0.002

2 2904 19 563 789.16E+9 0.002

3 2491 16 272 397.51E+9 0.003

4 2594 18 799 258.60E+9 0.003

5 2817 30 670 76.76E+9 0.004

6 2628 30 842 101.42E+9 0.004

7 3050 71 826 559.00E+9 0.008

Total 3132 161 394 2.27E+12 0.016
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aggregate food flows and the general spatial trends
between the FAF and county spatial scales compare
well. For example, note that the strong connectivity
between the corn/soy belt and the port of New
Orleans exists in both the FAF data (see figure 5(A))
and the countymodeled results (see figure 5(B)). Simi-
larly, the links between the New York area and the
Great Lakes, as well as the connections from the grain
belt to California, are shown in both figures 5(A) and
(B). The density is much higher for the FAF data than
inferred county results (refer to table 3). However, this
is sensible, since the spatial scale is so much larger (by

definition) in FAF, there will be more connectivity.
The county flow results were additionally pruned to
exclude links with fluxes <1 kg, further reducing the
estimated density at this scale.

Note the prevalence of self-loops in both the FAF
and county results (see table 5). For example, the trans-
fer of food fromLos Angeles County, CA to LosAngeles
County, CA is one of the largest links at the county
scale. Note that the Food Flow Model estimates a flow
of food, which occurs each time a commodity is trans-
formed (i.e. corn into cornmeal into biscuits). Cities are
important food manufacturers who process food items

Table 4.Ranking of total foodflowswithin theUnited States bymass (kg). The top 10 food outflow and inflowFAF zones and counties are
provided. Note that self-loops are included. The ranking for specific food commodity groups is provided in the SI.

FAF

Rank Outflow Mass (kg) Inflow Mass (kg)

1 Remainder of Iowa 1.97E+11 Remainder of Iowa 1.60E+11

2 Remainder ofNebraska 1.27E+11 Remainder ofMinnesota 1.06E+11

3 Remainder ofMinnesota 1.26E+11 Remainder of Illinois 1.00E+11

4 Remainder of Illinois 1.17E+11 Remainder ofNebraska 9.91E+10

5 Remainder of Kansas 9.13E+10 Remainder of Texas 6.66E+10

6 Remainder ofNorthDakota 6.98E+10 Remainder of California 6.23E+10

7 Remainder of California 6.32E+10 Remainder of Kansas 5.81E+10

8 Remainder of SouthDakota 5.86E+10 LosAngeles-Long Beach, CACFSArea 5.48E+10

9 Remainder ofWisconsin 5.32E+10 Remainder ofNorthDakota 5.48E+10

10 Remainder of Texas 5.23E+10 Remainder ofWisconsin 5.09E+10

County

1 Los Angeles County, CA 1.66E+10 LosAngeles County, CA 2.19E+10

2 FresnoCounty, CA 1.24E+10 FresnoCounty, CA 1.23E+10

3 Stanislaus County, CA 9.92E+09 Stanislaus County, CA 1.18E+10

4 San BernardinoCounty, CA 9.78E+09 MaricopaCounty, AZ 1.07E+10

5 San JoaquinCounty, CA 8.88E+09 OrangeCounty, CA 9.54E+09

6 Merced County, CA 8.86E+09 Riverside County, CA 8.71E+09

7 Riverside County, CA 8.69E+09 Erie County, NY 8.53E+09

8 Tulare County, CA 7.97E+09 CookCounty, IL 8.47E+09

9 KernCounty, CA 5.77E+09 Douglas County, NE 8.27E+09

10 Maricopa County, AZ 5.72E+09 SussexCounty, DE 7.78E+09

Figure 4.Maps of total foodflows (tons)within theUnited States.Maps show (A) FAF inflows, (B) FAF outflows, (C) county inflows,
and (D) county outflows.Maps for specific food commodity groups are provided in the SI.
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from one form to another. This is especially true of Los
Angeles County, whose food manufacturing industry
produced nearly $16billion in goods in 2012, the largest
of any county in the United States (US Census
Bureau 2015a). Further, Los Angeles brings in food

from other countries and agricultural production hubs
around the United States. In fact, the Los Angeles FAF
zone is the second largest food importer behind only
the New Orleans FAF zone. Together, the large food
manufacturing presence and sizeable international

Figure 5.Maps of foodflownetworks within theUnited States.Maps depict total foodflows (tons) for the (A) FAF and (B) county
scale. Links are shown for all FAF data and for the largest 5%of county links.

Table 5.Ranking of total foodflowswithin theUnited States bymass (kg). The top 10 links at the FAF and county scales are provided. Note
that self-loops are included. The ranking for specific food commodity group is provided in the SI.

FAF

Rank Link Mass (kg)

1 Remainder of IowaRemainder of Iowa 1.32E+11

2 Remainder ofNebraskaRemainder ofNebraska 8.43E+10

3 Remainder ofMinnesotaRemainder ofMinnesota 7.71E+10

4 Remainder of IllinoisRemainder of Illinois 7.10E+10

5 Remainder ofNorthDakotaRemainder ofNorthDakota 4.72E+10

6 Remainder of KansasRemainder of Kansas 4.31E+10

7 Remainder of SouthDakotaRemainder of SouthDakota 4.13E+10

8 Remainder of TexasRemainder of Texas 3.80E+10

9 Remainder of IdahoRemainder of Idaho 3.13E+10

10 Los Angeles-Long Beach, CACFSArea LosAngeles-Long Beach, CACFSArea 3.09E+10

County

1 BroomfieldCounty, CO BroomfieldCounty, CO 5.21E+09

2 Los Angeles County, CA LosAngeles County, CA 4.23E+09

3 Los Angeles County, CAOrangeCounty, CA 3.93E+09

4 Niagara County, NY Erie County, NY 3.92E+09

5 Merced County, CA Stanislaus County, CA 3.49E+09

6 SanDiegoCounty, CA SanDiegoCounty, CA 3.25E+09

7 Erie County, NY Erie County, NY 2.78E+09

8 CamdenCounty, NJ Sussex County, DE 2.72E+09

9 San JoaquinCounty, CA Stanislaus County, CA 2.46E+09

10 Stanislaus County, CAMerced, CA 2.35E+09
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imports explain why Los Angeles County is the largest
self-loop at the county scale.

Over half of the 10 largest links are estimated to be
within California (see table 5). This model result is
sensible due to the large mass fluxes reported in the
FAF data combined with the large spatial hetero-
geneity in production and attraction factors for food in
California. Even though other FAF zones tend to
transfer larger masses than those within California,
these flows are distributed across many more smaller
counties. California counties can be 1–2 orders of
magnitude larger than counties in the eastern United
States and exhibit greater heterogeneity in production
and consumption than Midwestern counties. For
example, the largest FAF transfer is the self-loop for
remainder of Iowa (to itself). Due to relatively limited
diversity in crop type and production patterns across
Iowa, it is unsurprising that county level food transfers
within Iowa are relatively evenly spread. The homo-
geneous production and distribution would inhibit
a handful of counties from transferring all food
within the state. In this way, the more heterogenous
distribution of production and consumption within
California leads tomore concentrated foodflows.

The Food FlowModel preserves known patterns at
other spatial scales. Figure 6 shows the relationship
between node connectivity (i.e. degree, k) and cen-
trality (i.e. between-ness centrality, B). The relation-
ship between B and k has been presented as
B=a×k b in empirical studies at different spatial
scales (Ercsey-Ravasz et al 2012, Lin et al 2014, Konar
et al 2018). This relationship is preserved in our esti-
mated county flow network with adjusted R2=0.93
(a=2.2×10−9; b=2.4) for the undirected network
and adjusted R2=0.94 (a=4.1×10−9; b=2.3)
for the directed network. A ‘core’ group of counties is

evident which have both high connectivity and cen-
trality and are critical to the structure of the domestic
food flow network. These core counties are: San Bern-
dardino, CA; Riverside, CA; Los Angeles, CA; Shelby,
TN; San Joaquin, CA; Maricopa, AZ; San Diego, CA;
Harris, TX; and Fresno, CA. Importantly, the Food
Flow Model does not prescribe this relationship; it
naturally emerges from our algorithm. Figure 6
demonstrates that the Food FlowModel is able to gen-
erate known macroscopic properties of other food
flownetworks (e.g. as presented byKonar et al 2018).

3.2. Comparisonwith literature
We compare our results with the county-scale corn
flows modeled by Smith et al (2017). To our knowl-
edge, this is the only other information on county-
scale food flows in the United States. Smith et al (2017)
use a transportation optimization model to estimate
corn flows between US counties. To compare our
results, we transform our estimates of SCTG 02 to
estimates of corn bymultiplying the SCTG 02 flows by
the fraction of corn grains produced in each origin
county as compared to total grain production. Grains
here include the following crops: barley, buckwheat,
corn (grain), corn (silage), millet (proso), oats, rice,

Figure 6.Relationship between node connectivity and centrality. Node connectivity ismeasured by node degree, k. Node centrality is
measured by between-ness centrality,B. Red points indicate directed food flows, while black points indicate undirected food flows.
The relationship is described byB=a×k b as in other empirical studies at different spatial scales. A ‘core’ group of counties is
evident: San Berndardino, CA; Riverside, CA; Los Angeles, CA; Shelby, TN; San Joaquin, CA;Maricopa, AZ; SanDiego, CA;Harris,
TX; and Fresno, CA.

Table 6.Metrics to comparemodel performance of the Food Flow
Model with Smith et al (2017). Note thatmaizefluxes for the Corn
Belt only are considered. The simplematching coefficient (SMC),
R-squared (R2), mean absolute error (MAE), and rootmean
squared error (RMSE)metrics are provided for inter-county links
and county-scale inflows and outflows.

SMC R2 MAE RMSE

Links 1 0.07 126, 178, 325 202, 361, 790

Inflow 1 0.04 405, 160, 210 734, 981, 931

Outflow 1 0.46 310, 642, 341 469, 188, 425
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rye, sorghum (grain), sorghum (silage), triticale,
wheat, andwild rice.We compare results for Corn Belt
states (Illinois, Indiana, Iowa, Kansas, Missouri, and
Nebraska) to avoid inaccuracies in states which
produce large quantities of other grains.

Table 6 presents metrics to compare model output
between the Food Flow Model and Smith et al (2017).
The simple matching coefficient (SMC) (Gower 1971)
indicates that themodels identically estimate the presence
or absence of linkswithin theCornBelt (SMC=1). Both
models estimate the existence of links between most
county pairs in theCornBelt, albeitmanywith very small
values. The root mean squared error, mean absolute

error, and R-squared (R2) metrics are also presented in
table 6. These metrics additionally consider the intensity
of thefluxes. For this reason, thesemetrics aremore strict
in assessingmodel performance than SMC.Note that the
R2 value is highest for the county-scale outflows. This
indicates that the two models have the most agreement
on outflows, likely due to the quality of the production
statistics that drives estimationof this variable.

Figure 7 maps total inflows and outflows for each
Corn Belt county. Note that both inflow and outflow
maps share a common scale. The spatial trends com-
pare remarkably well between the two models.
Figure 8 shows how our corn flows compare to the

Figure 7.Comparison ofmaizeflow [tons]maps for theCorn Belt of theUnited States.Maps show (A)maize inflows for ourmodel,
(B)maize outflows for ourmodel, (C)maize inflows fromSmith et al (2017), and (D)maize outflows fromSmith et al (2017).

Figure 8.Comparison ofmaizeflownetworks [tons] for theCorn Belt of theUnited States. (A)The Food FlowModel for SCTG02
scaled bymaize productionwithin each county. (B)Maizeflows fromSmith et al (2017). Links representmaizeflows between
counties.
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flows estimated by Smith et al (2017). Note that maps
in figure 8 share the same scale and indicate that our
model has more links and larger outflows for many
counties. The SI compares top 10 rankings for inflows,
outflows, and links between ourmodel and Smith et al
(2017). Our model has more links with smaller values.
In particular, ourmodel showsmore links inNebraska
than does Smith et al (2017), which is more con-
centrated in Illinois and Iowa.

Table 7 provides Corn Belt state outflows, inflows,
and intra-flows (flows from a state to itself). This
information is provided for FAF data, Smith et al
(2017), our model without corn normalization, and
our model with corn normalization. The total flows
estimated differ between our model of corn and the
Smith et al (2017) model. It is important to note that
our model without corn normalization replicates the
raw FAF data (as designed). So, our model char-
acterizes similar spatial trends as Smith et al (2017),
with the additional advantage of being constrained by
FAF data. Importantly, Smith et al (2017) use their
estimated corn flows to perform a spatially explicit
environmental impact analysis of the US corn supply
chain. This application of lifecycle assessment to

spatially refined corn flows highlights potential appli-
cations of similar methods to the spatially refined esti-
mates of all foodflows provided in this paper.

Comparing our model with Smith et al (2017) is
not a true validation exercise. Yet, it is useful to com-
pare outcomes across these two model frameworks.
Smith et al (2017) do not validate their model output
with real-world data (since none is available), so we are
unable to confirmwhichmodelmost accurately repre-
sents reality. However, we believe that our food flow
model improves upon the model presented in Smith
et al (2017). This is because we constrain our results
with FAF scale information. Additionally, we require
our estimates to follow known properties of food flow
networks at other spatial scales. We also incorporate
machine learning, which is skilful in accurate estima-
tions, albeit with limitedmechanistic intuition.

3.3. Sensitivity analysis
Through the GSUA we have found that distance is the
most influential variable to the output variance across
all SCTGs. For example, for SCTG 03 the first order
sensitivity of distance is 0.046. Thismeans that 4.6%of

Table 7.Comparison ofmaize flows for theCorn Belt in theUnited States. Note that values for this study
(without corn production scaling) are equivalent to the data reported by the Freight Analysis Framework (FAF).

This study (with corn production scaling)

State Outflows Inflows Intraflows All Flows

IL 2.24E+09 4.23E+09 6.54E+10 7.19E+10

IN 2.20E+09 5.49E+08 2.24E+10 2.52E+10

IA 6.75E+09 2.31E+09 7.29E+10 8.19E+10

KS 4.40E+09 3.71E+09 1.98E+10 2.79E+10

MO 1.43E+09 2.94E+09 9.48E+09 1.39E+10

NE 5.30E+09 8.58E+09 6.48E+10 7.87E+10

This study (without corn production scaling)

IL 2.57E+09 5.17E+09 7.09E+10 7.87E+10

IN 2.28E+09 6.25E+08 2.32E+10 2.61E+10

IA 6.76E+09 2.32E+09 7.31E+10 8.21E+10

KS 6.53E+09 4.12E+09 4.47E+10 5.54E+10

MO 1.68E+09 3.56E+09 1.30E+10 1.83E+10

NE 5.64E+09 9.66E+09 6.73E+10 8.26E+10

Smith et al (2017)model

IL 6.97E+09 6.89E+07 2.31E+10 3.01E+10

IN 6.07E+07 1.29E+09 1.46E+10 1.59E+10

IA 7.90E+08 5.61E+09 4.84E+10 5.48E+10

KS 4.04E+08 1.92E+09 8.03E+09 1.04E+10

MO 3.29E+08 8.92E+08 3.99E+09 5.22E+09

NE 1.95E+09 7.12E+08 2.46E+10 2.73E+10

FAF4

IL 2.57E+09 5.17E+09 7.09E+10 7.87E+10

IN 2.28E+09 6.25E+08 2.32E+10 2.61E+10

IA 6.76E+09 2.32E+09 7.31E+10 8.21E+10

KS 6.53E+09 4.12E+09 4.47E+10 5.54E+10

MO 1.68E+09 3.56E+09 1.30E+10 1.83E+10

NE 5.64E+09 9.66E+09 6.73E+10 8.26E+10
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the variance of SCTG 03 flows is impacted by distance,
when keeping all other variables at their average value.
However, the total-order sensitivity of distance for
SCTG 03 is 0.88. This indicates that 88% of the output
variance is driven by the input variable distance. This
is not surprising because distance has long been known
to be a key factor in trade models (e.g. the gravity
model of international trade) (Disdier andHead 2008).
Note that the GSUA results for all SCTGs are provided
in the SI.

Based on the criterion of the total-order index, all
variables in our model are important. This a not sur-
prising because we used the least absolute shrinkage
and selection operator (Lasso) method to remove less
important variables to avoid overfitting in our super-
vised learningmodeling process.We also applied a sig-
nificance test for each variable in our gamma
regression model to remove any variables that are not
significant. Some input variables have a very small
first-order index. This indicates that some variables
impact the result not by themselves but through inter-
actions with other variables. Note that we choose not
to include interaction terms in our model, because
they would make comparison with the gravity model
of trade difficult. However, future research may want
to explore these interaction terms inmore detail.

These GSUA findings have implications for food
supply chain management. Distance plays an outsized
role in the model outcome. This highlights the fact
that investments in the underlying transportation sys-
tem (which reduce the cost (either in financial or con-
venience/time terms)may enable the transmission of
more food fluxes.

4. Conclusion

We developed the Food Flow Model to estimate food
flows between all county pairs in the United States. To
do this, we developed a novel, data-driven framework
that incorporates supervised learning, mass balance,
network constraints, and linear programming. This
modeling framework ensures that our county-scale
estimates are in accordance with available empirical
information and lend additional reliability to Food
Flow Model results. Our estimates of corn flows
between counties in the US compare well with Smith
et al (2017), the only other county-scale information
that we are aware of. Our work contributes to the food
flow modeling literature by modeling all food com-
modity flows, as well as incorporating the idea of
network constraints andmass balance. Going forward,
data collection efforts to validate agri-food supply
chain models of the United States will be of increased
importance.

We provide estimate of county-scale food flows for
the year 2012. This was an exceptional drought year in
the United States. Importantly, the drought impacts
should be captured by the FAF data, as well as

production and consumption data utilized within our
model already, meaning our model was able to incor-
porate these notable conditions. However, it is possi-
ble that the regression models (determined by the
supervised learning algorithm on FAF data) will be
specific to each time period. Ourmodeling framework
is general andwould apply in other years; however, the
Food FlowModel should be run in each new time per-
iod to ensure themost accurate results. In fact, we sug-
gest that comparingmodel structure and performance
in a different time period (i.e. non-drought year) is an
an important area of future research.

Future work could improve the realism of our
algorithm. To capture the nonlinearity between envir-
onmental variables and food flow, future models
could include interaction terms and higher order
polynomials into the gamma regression model.
Alternatively, algorithms could utilize stacking (Wang
et al 2011) by including the output of multiple non-
linear learners (e.g. deep learning) into a gamma
regression to better capture nonlinearity while preser-
ving the conditional gamma distribution of the output
flow estimate. As another example, more realistic dis-
tance matrices could be used, such as those that are
constrained by available infrastructure. For example,
future research could utilize distances between coun-
ties based upon the roadway network, rather than
shortest paths. In fact, future research could take
advantage of the mode information provided by FAF
to further resolve these food flow estimates to specific
infrastructure networks (i.e. road, rail, waterway). If
this is accomplished, an inter-connected network
model could be developed to reveal potential vulner-
abilities and resiliencies of the national food supply
chain. Additionally, future research could combine
these detailed food flow estimates with high-resolu-
tion footprint estimates to evaluate the water, carbon,
and nutrient footprint of the national food supply
chain in theUnited States.

Critically, we make our inferred food flows freely
available and publicly accessible with this paper. In
this way, we provide transparency to our work and
enable future researchers to build upon our results.
The Food FlowModel output is provided in the SI.
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