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Abstract
Global food trade is crucial for food security and availability. Trade is typically optimized to
promote efficiency, whereas resilience is increasingly being recognized as another important
objective. However, it is not clear if prioritizing resilience comes at the expense of efficiency or if
the two objectives can be promoted simultaneously. We develop a complex network framework to
assess the relationship between efficiency and resilience of food trade for the last half century.
There is a competitive relationship between efficiency and resilience when only network topology
is considered. However, a cooperative relationship between efficiency and resilience exists when the
intensity of trade connections is accounted for. Policy makers can use this framework to evaluate
the relationship between efficiency and resilience in critical supply chains.

1. Introduction

Global food trade is a critical part of our modern
food system [1, 2]. Food trade enables nations around
the world to specialize in producing agri-food com-
modities for which they have a comparative advant-
age [3] to meet the diverse demands of consumers
in distant locations [4, 5]. Investments in transporta-
tion infrastructure and trade agreements have helped
to increase the connectivity between nations over the
last several decades [6] to promote efficiency [7].
However, it is not clear if the efficiency gains that
have been obtained through increased connectivity
of global trade enhance or detract from its resilience.
Higher connectivity may enable consumers to access
food from a variety of sources in the event that a
major exporter is disrupted [8, 9]. Alternatively, con-
nectivity may enable production shocks and export
restrictions to be transmitted to importers [10]. Even
though efficiency and resilience are two important
objectives of any supply chain, we do not understand
how these two goals interact with one another in food
trade networks. This study seeks to determine if effi-
ciency and resilience in food trade networks are com-
petitive or cooperative goals.

Complex network methods can be used to under-
stand resilience in an increasingly interconnected
world facing growing threats from natural hazards,
malevolent attacks, economic shocks and pandem-
ics [11–13]. Previous studies of network efficiency
and resilience have not accounted for the intensity
of connections [14], which is an important aspect
of food trade due to high heterogeneity in mass flux
between nations [15, 16]. Additionally, it is import-
ant to determine resilience of food trade to twomajor
threats: spreading risk and disruption to a major
exporting nation. Most studies of the resilience of
food trade consider a single threat [9, 10]. Here, we
evaluate food trade resilience to both spreading risk
(e.g. contamination among food commodities from a
food-borne pathogen) and targeted node attack (e.g.
the most important food exporter, both for connec-
tions and mass, is ‘knocked out’ of the trade system,
such as from a malevolent cyber attack) [17–19].

The complete removal of themajor exporter from
the global food trade network is an extreme scen-
ario, yet one that is increasingly necessary to con-
sider. National defense agencies suggest that scen-
arios in which entire nations are knocked out of the
trade system, due to malevolent cyber attacks, are
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within the realm of possibility [20]. These attacks
could incapacitate machinery and computer sys-
tems involved in agricultural production, harvest,
transport, food manufacturing, inventory control
and market information. In 2011, extreme drought
led Russia (the second-largest wheat exporter) to
impose a complete export ban on wheat [21]. Dur-
ing the global COVID-19 pandemic, over 20 nations
imposed border shutdowns and export bans on agri-
food commodities [22], including Cambodia and
Myanmar, who imposed a complete export ban on
rice [23]. These examples highlight that the complete
removal of a nation from global trade—although
extreme—is plausible.

In this study, we consider efficiency and resili-
ence from a complex network perspective and do not
explicitly consider economic aspects. This means that
our approach captures the physical network structure
of food trade related to the logistics of producing,
processing and transporting agri-food commodities
around the globe. Previous studies have applied net-
work analysis to food trade. However, studies of food
trade networks to date either assess only resilience
or efficiency, rather than the relationship between
these two important objectives. Tu et al [24] stud-
ied the relationship between resilience, network con-
nectedness and resource use. Distefano et al [25]
analyzed resilience against export quantity drops in
global staple trade. Fair et al [26] predicts the resi-
lience of global wheat trade to targeted and random
link removals. Gephart et al [27] studied resilience of
fish trade against changes in supply levels. D’Odorico
et al [28] analyzed the water use efficiency and con-
nectivity of food trade. Ercsey-Ravasz et al [10] stud-
ied the risk of contamination among food commodit-
ies through international trade by node-level analysis,
while we assess the effects of the complete network
structure over spread risk.

We present a comprehensive statistical network
framework to assess the trade-off between food trade
efficiency and resilience. To our knowledge, this is the
first study to quantify the relationship between food
trade efficiency and resilience in a way that accounts
for both the topological structure and the hetero-
geneous distribution of trade intensities (see table 6
in the supplementary information (SI), available
online at stacks.iop.org/ERL/16/105003/mmedia; the
SI provides an in-depth literature review and com-
parison with prior studies). The following questions
guide this study: (a) Is there a trade-off between effi-
ciency and resilience in topological food trade net-
works? (b) How does the efficiency and resilience
trade-off in food trade networks compare with the-
oretical networks? (c) How does this relationship
change when trade intensities are accounted for? (d)
How does food trade efficiency and resilience change
with time? To answer these questions, we use the
COMTRADE database to evaluate real-world empir-
ical networks of global food trade from 1965 to 2018

for the full spectrum of empirical food trade net-
works, from the trade of individual commodities to
the entirety of agri-food. We also generate a suite
of theoretical and null-model networks to compare
against.

2. Methods

We develop a statistical complex network framework
to assess the relationship between efficiency and resi-
lience. We both adopt existing metrics from the lit-
erature and introduce novel ones. All of the metrics
focus on the existing repeat movement (re-exports
and re-imports of food flows) in the global food
trade while measuring efficiency and resilience. We
use the average shortest path length, d̂, for topolo-
gical network efficiency and the epidemic threshold,
τ , for topological resilience to contaminant spread
among food commodities. We introduce the change
in the dominant eigenvalue, λ̄, to evaluate the resili-
ence of topological networks to targeted removal of
the nation with the largest number of export connec-
tions. We present a new metric that captures the effi-
cient usage of the trade connections in terms of mass
transport. Specifically, we introduce E(Γ) to measure
the inverse of the total weight [ton] being transmit-
ted through the shortest paths. We introduce R(Γ) to
quantify resilience to targeted removal of the major
mass exporter. R(Γ) is defined to be the remaining
portion of mass in the network after the mass of the
largest exporter is removed. A summary table of all
metrics used in this study is provided in table 1.

To build up our understanding of these met-
rics, we numerically generate a suite of well-studied
theoretical networks (e.g. star, scale-free, random,
ring topologies) with multiple weight distributions
(unweighted, extreme, power-law, normal, uniform
weight distributions). We then apply these metrics to
trade data for a variety of agri-food commodities (e.g.
grain, meat, vegetables and fruits, and representat-
ive individual commodities). Empirical data is collec-
ted from 1965 to 2018 for every year to evaluate how
the network structure has changed with time.We also
generate null-model statistical networks for realistic
benchmarks. Table 2 lists all networks included in this
study.

2.1. Empirical trade data
The COMTRADE database provides information on
the bilateral trade between nations for all agricul-
tural and food commodities in units of mass and
value [29]. The real-world food trade data from
COMTRADE is used to construct the empirical net-
works in our analysis. We collect and analyze trade
data for the following agri-food commodities: (a)
aggregated food categories – ‘grain’, ‘meat’ and ‘veget-
ables and fruits’; (b)major individual commodities—
wheat, rice, maize and soy from ‘grain’; beef, chicken,
pork and fish from ‘meat’; and tomato, potato, apple
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Table 1. Complex network framework for both topological (i.e. unweighted) and weighted efficiency and resilience. Bold ‘X’ indicates
the novel metrics introduced in this study. Plain ‘X’ indicates the metrics integrated from the existing literature to create a
comprehensive framework.

Topological efficiency and resilience

Symbol Equation Resilience Efficiency Measures Definition

d̂ 1
N(N−1)

∑
(i,j):i̸=j dij × Average shortest path length of

the network
Efficiency as the number of
intermediate steps between any
two trade partners

λ̄
(λ1−λ ′

1 )

λ1
∗ 100 X Change in spectral radius of

network
Resilience to targeted attack on
the exporter with most trade
partners

τ 1
λ1

× Epidemic threshold of network
structure

Resilience against a food-borne
disease contamination among
commodities

Weighted efficiency and resilience

Symbol Equation Resilience Efficiency Measures Definition

E(Γ) 1
N(N−1)

∑
(i,j):i̸=j

dij
wij

X Average shortest path length per
transported mass

Efficiency as the transportation
of larger masses through shorter
paths

R(Γ)
∑

i W
i
out−max(Wout)∑

i W
i
out

X Change in mass supply of the
trade network

Resilience to targeted attack on
the major exporter with most
mass supply

dij: minimum number of hops (i.e. shortest path length) between nodes i and j in the unweighted trade network.

N: number of nodes in the trade networks.

λ1: dominant eigenvalue of the original unweighted trade network adjacency matrix.

λ ′
1 : dominant eigenvalue of the unweighted trade network adjacency matrix after the removal of exporter with most trade connections.

W i
out: Supply amount (in tons) of node i in weighted trade network.

max(Wout): largest supply amount (in tons) in the weighted trade network by a single node.

wij: flow amount (in tons) on link between node i and j in the weighted trade network.

and banana from ‘vegetables and fruits’; and (c) total
agri-food—the sum of all agricultural and food com-
modities. Refer to table 9 in SI for the list of trade data
considered. Figure 1(A) provides maps of all aggreg-
ated food commodity exports for each country in the
year 2018 in units of tons. The United States exports
themost ‘grain’, ‘meat’ and ‘total agri-food’ among all
countries.

Data is collected from 1965 to 2018 for each
year. Figure 1(B) presents graphs of the total trade
in all aggregated food commodities over the study
time period broken down by major category. Grain
is the largest traded category in terms of total mass.
Commodities in the COMTRADE database are coded
by the Standard International Trade Classification
(SITC). More information on the raw and processed
COMTRADE data is included in SI.

We represent the global food trade as a flow net-
work where a node is assigned to each nation and a
directed link is assigned to each trade relationship.We
consider both exports and imports of commodities,
and the direction of links is structured from exporter
to importer. The directed network is non-symmetric.
Data on re-exports and re-imports are also incorpor-
ated. For any re-export, we introduce (a) a directed
link from the producer to intermediate stop and (b)
another directed link from the intermediate stop to
final customer. For example, if the producer nation

‘A’ first exports the goods to intermediate nation ‘B’
and then nation ‘B’ re-exports the same commodity
to final consumer nation ‘C’, we introduce two links
into the network. First directed link is from nation ‘A’
to ‘B’, and the second one is from nation ‘B’ to ‘C’. By
including the re-exports and re-imports, we capture
intermediate movement of goods in the food trade
network.

2.2. Topological efficiency and resilience metrics
The link-based average shortest path length of the
network is used to quantify topological efficiency.
This is a commonly preferred unitless network dis-
tance metric, as it enables the efficiency of network
connections to be determined with only topological
characteristics [30–32]. We use d̂ to quantify topolo-
gical efficiency:

d̂=
1

N(N− 1)

∑
(i,j):i̸=j

dij (1)

whereN is the number of nodes in the network and dij
is the link-based shortest path (i.e. smallest number
of jumps) between nodes i and j computed by Dijk-
stra’s algorithm [33]. Bigger d̂ values represent more
jumps between any two nodes in the network. As d̂
gets closer to 1, it represents a more efficient network
since each node is connected to every other node with
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Table 2. Networks included in this study. Theoretical networks are numerically-generated based on the given node degree distributions
obtained from the literature. Null-model networks are created by keeping the node degree distribution of each empirical food
commodity trade network fixed. Empirical networks are created based on the global food trade data obtained from COMTRADE for
each year.

Theoretical networks

Topology Degree distribution Density† Weight distribution⋄

Star Extreme [0.02,0.04, . . . ,1] Unweighted, Extreme,
Power-law, Normal,
Uniform

Scale-free Power-law
Random Normal
Ring Uniform

Null-model networks△

Commodity group Single commodities Years Mass flux

Grain Wheat, rice, corn, soy 2018 Unweighted
Meat Beef, pork, chicken, fish
Vegetables and fruits Potato, tomato, apple, banana
All agri-food

Empirical networks∗

Commodity group Single commodities Years Mass flux

Grain Wheat, rice, corn, soy 1965–2018 Unweighted, COMTRADE values
Meat Beef, pork, chicken, fish
Vegetables and fruits Potato, tomato, apple, banana
All agri-food
∗ For the empirical food trade, all of the aggregated and single commodity networks are created individually for each study year, and all

of them are analyzed through topological and weighted efficiency and resilience metrics.
† The theoretical networks are numerically-generated for various densities for each topology individually. The generated network

density values start from 0.02 and go to 1 by 0.02 increment.
⋄ For topological efficiency and resilience analysis, unweighted case for both theoretical and empirical networks are considered. They are

only studied through their 0-1 adjacency matrices. For the weighted efficiency and resilience analysis, all of the theoretical networks

(i.e. for all density values and topology combinations) are assigned with four different weight distributions individually. In the empirical

food trade networks, recorded trade amounts [in ton] in the original COMTRADE dataset are included to study the weighted efficiency

and resilience.
△ For null-model networks, the node degree distribution of each individual and aggregated commodity trade is kept constant.

Thousand simulations of each commodity for the year 2018 is generated.

a direct link. From a supply chain perspective, lower
d̂means that there are lower number of intermediate
stops in the flow of goods between any producer and
end consumer [34].

Each link in the global food trade network indic-
ates an additional transit through a foreign country.
Each new border crossing represents additional time
due to loading and unloading processes, as well as
additional customs and border paperwork and fees.
This would be particularly problematic for perish-
able goods, in which time delays could lead to food
loss and waste, and any extra refrigeration required
during transit represents additional energy require-
ments. So, additional border crossings indicate less
efficiency in the network. Hence, having a lower aver-
age shortest path length, i.e. lower number of inter-
mediate stops on average, would represent a more
efficient flow network [34, 35]. Importantly, note
that we focus on complex network efficiency rather
than economic efficiency, which typically measures
price, in which additional border crossings may
or may not enable supply chains to achieve lower
prices.

We evaluate the topological resilience of food
trade networks to targeted node attack. Targeted node
attack and complete removal is a common approach
to evaluate supply chain resilience [36]. We consider
targeted removal of the major exporter (i.e. the coun-
try with the most export links) in order to represent
a supply disruption [37]. The definition that we use
is agnostic as to the cause of the node-scale removal,
but which could occur due to a large shock in that
nation’s climate or socio-political system, e.g. due to
a stochastic weather event or malevolent attack by an
adversary. In this way, we determine the dependence
of the food trade system on the removal of the key
exporter in the network.

To quantify resilience to targeted attack, we intro-
duce a new resilience metric, λ̄. λ̄ quantifies net-
work reliance on the nation that has the largest
number of export connections. Our approach incor-
porates eigenvalues of the adjacency matrix, which
many prior studies have also used to assess resi-
lience [38–43]. Our metric, λ̄, is distinct to prior
resilience metrics, in that it best captures resilience
to targeted attack in trade networks. λ̄ computes
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Figure 1. Graphs of COMTRADE food trade data used in this study. Map of mass export [ton] by country for total (A) agri-food,
(C) meat, (E) vegetables and fruits, and (G) grain for the year 2018. The United States is the largest mass exporter of all agri-food
and exports 2.34E+08 tons. The United States is the major exporter of meat with a total export of 8.73E+06 tons. Spain is the
major mass exporter of vegetables and fruits with a total export of 1.44E+07 tons. The United States is the major mass exporter of
grain with a total export of 1.52E+08 tons. Time series of total (B) agri-food, (D) meat, (F) vegetables and fruits, and (H) grain
trade from 1965 to 2018. Trade by major food category is also provided.

the percentage change in the dominant eigenvalue
of the directed network adjacency matrix when the
node with highest out degree is removed from the
graph:

λ̄=
(λ1 −λ ′

1)

λ1
× 100 (2)

where λ1 is the dominant eigenvalue of the square
adjacencymatrix of the original directed network (i.e.
all nodes are included in the graph). λ ′

1 is the new
dominant eigenvalue of the square adjacency mat-
rix of the directed network after removing its highest

out degree node, (both the corresponding row and
column are removed from the adjacency matrix). λ̄
is the percentage change in the dominant eigenvalue
of the directed network after removal of the node
with the highest out degree. λ̄ can be implemented on
both directed and undirected networks without loss
of generality.

The dominant eigenvalue of the adjacency mat-
rix represents the spectral radius of the network
[44]. The spectral radius is correlated with node
degree variations [45]. Network topologies with
higher degree variations have higher dominant
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eigenvalues whereas topologies with lower degree
variations have lower dominant eigenvalues. Core-
periphery topologies have higher degree variations
and lattice-like topologies have lower degree vari-
ations. Hence, under the same network size and dens-
ity, core-periphery topologies have higher dominant
eigenvalues whereas lattice-like topologies have lower
dominant eigenvalues.

Importantly, repetitive flow transmissions
between nodes is captured by the dominant
eigenvalue of the adjacency matrix [46]. The dom-
inant eigenvalue of the adjacency matrix is bounded
by network connectivity (see SI for more detailed dis-
cussion). As network topologies that have higher con-
nectivity would enable more frequent repeat move-
ments, they will have higher dominant eigenvalues.
As network topologies that have lower connectivity
would enable less frequent repeat movements, they
will have lower dominant eigenvalues [47]. Hence,
dominant eigenvalue of the adjacency matrix repres-
ents the ability of repeat transmission in the network
based on its topology [48], i.e. branching of the net-
work structure [49].

A higher percentage change in the domin-
ant eigenvalue indicates the network has a greater
dependence on the removed node for the flow trans-
mission. A lower λ̄ indicates networks that are more
resilient to the threat of targeted node removal,
as their flow propagation is less affected from the
removal of the node with highest out degree.

For targeted node removal in unweighted net-
works, we consider the largest supplier of trade con-
nections which stands for the node with highest out
degree in the food trade network [50–53]. As degree
is one of the most common node centrality measures
[54, 55], this approach represents theworst-case scen-
ario in terms of node removal which is a common
supply chain network resilience assessment [34].

We also consider spreading risk of a food borne
disease among food commodities. To assess the resi-
lience of the network to spreading risk, we use the
epidemic threshold metric, τ . τ is also based on the
dominant eigenvalue of the unweighted network and
provided in equation (3) as:

τ =
1

λ1
(3)

where λ1 is the dominant eigenvalue of the ori-
ginal directed adjacency matrix and τ is the epidemic
threshold.

τ has been used as a measure of resilience against
spreading risk in graph theory [56–58], such as
virus spread in internet networks [59–61]. Similar
to internet networks, food trade can also be char-
acterized with repeat movements of flow between
nodes. Hence, in food trade among the re-export
and re-import processes, any food-borne disease that
starts in one country can spread through trade. If the
value of network dominant eigenvalue is small, then

threshold for any disease to become an epidemic τ is
higher. This is because the network connectivity and
its ability to transmit flow is lower. So, the probabil-
ity that the disease will die out before it contaminates
the majority of the network is higher (i.e, likely will
not turn into an epidemic). On the other hand, if the
value of network dominant eigenvalue is large, then
the threshold for observing an epidemic τ is low. This
means that passing the epidemic threshold is easier
and there is a higher chance for a disease to become
an epidemic in the network, since network connectiv-
ity and its flow transmission ability is higher.

For example, core-periphery structures have
higher connectivity than lattice-like structures.
Therefore, (under the same network density) the
dominant eigenvalue of the core-periphery topo-
logies are higher than lattice-like topologies. This
means that the epidemic threshold is lower for
core-periphery structures than it is for lattice-like
structures. Hence, the probability of a locally borne
disease contaminating the network is higher in
core-periphery structures. On the other hand, as the
dominant eigenvalues of lattice-like topologies are
lower, they have higher epidemic thresholds. Hence,
the probability of a locally borne disease contaminat-
ing the network is lower in lattice-like structures [62].

2.3. Weighted efficiency and resilience metrics
Weighted efficiency and resilience metrics explicitly
account for trade intensity of arcs (and not just topo-
logy). The weighted efficiency and resilience metrics
directly build on the unweighted metrics but with
explicit consideration ofmass.We develop a newmet-
ric to quantify the weighted efficiency of trade net-
works. Ourweighted efficiencymetric, E(Γ), captures
the efficient usage of the trade connections in terms
of mass transport. This is distinct to other flow-based
efficiency metrics in the literature [63, 64], which
usually incorporate the cost or distance of transport
as the link weights. However, existing metrics do not
explicitly consider the efficient allocation of mass flux
to shortest paths in the network. With this goal in
mind, we build on d̂ by using link-based shortest
paths, but now also consider the allocation of mass
to paths.

Weighted efficiency, E(Γ), is formulated as:

E(Γ) =
1

N(N− 1)

∑
(i,j):i̸=j

dij
wij

(4)

where wij is the total weight [ton] being transmit-
ted through the link-based shortest path, dij, from
node i to j. E(Γ) is an inversely weighted shortest
path measure since mass is in the denominator and
shortest path length is in the numerator. Network
efficiency increases as the value of E(Γ) decreases.
This is because E(Γ) becomes smaller as greater mass
is transmitted through shortest paths. Conversely, as
E(Γ) increases the efficiency of the network declines.

6
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This means that the shortest paths in trade networks
should be allocated greater quantities ofmass in order
to achieve lower values of E(Γ), i.e. higher efficiency.
A simple representation of how E(Γ) works at both
the link and network-level is illustrated in figure 10
in SI.

Our weighted resilience metric builds upon λ̄, in
that targeted removal of the most important exporter
is again considered. Weighted resilience, R(Γ), quan-
tifies the reliance of the network on the largest mass
supplier nation. Specifically, R(Γ) calculates the mass
remaining in the trade system after the largest mass
exporter is eliminated:

R(Γ) =

∑
iW

i
out −max(Wout)∑

iW
i
out

(5)

where W i
out is the mass export of each nation i and

max(Wout) is the total quantity of mass exported by
the largest mass exporter. Larger values ofR(Γ) indic-
ate that the mass of the food trade network is less reli-
ant on themajormass exporter, whichmeans the net-
work has higher weighted resilience. Smaller values of
R(Γ) indicate the food trade network has greater reli-
ance on the major mass exporter for the mass avail-
able to the trade system, or that the network is less
resilient to targeted removal of this node. Hence, the
dependence of the food trade network on a single
nation in terms of the supply amount [in tons] is
quantified by R(Γ). The countries that are removed
to calculate R(Γ) in empirical networks are shown in
figure 1 (e.g. the largest mass exporter by food cat-
egory). Note that only resilience to mass flux disrup-
tion is considered, as spread risk is mainly based on
topology.

2.4. Theoretical and null-model comparison
networks
We construct theoretical and null-model networks to
better understand the performance of the efficiency
and resilience metrics. Using theoretical networks as
reference points to the empirical network of study is
a common approach in the literature [65, 66]. For
example, Rodríguez-Iturbe and Rinaldo [67] con-
sidered star and ring topologies as a comparison point
for the fractal structure of river basins. Tu et al [24]
adopted the Erdös-Rényi model as a reference point
for global food trade modularity and interconnected-
ness. Fair et al [26] analyzed scale-free network stat-
istics as a comparison point for global wheat trade.
Similarly, Popp et al [68] examined scale-free net-
work clustering as a reference point for global honey
trade.

We generate two extreme theoretical networks
(i.e. ring and star) and two more moderate net-
works (i.e. random and scale-free). Random net-
works are generated according to the Erdös-Rényi
model; scale-free networks are generated based on

the Barabási-Albert model. Core-periphery networks
are known to prioritize efficiency, while lattice-like
networks prioritize resilience [69] (see figure 2). For
this reason, values of d̂, λ̄ and τ in the ring and
star networks provide the upper and lower bounds
of the envelope for the empirical food trade results,
since these theoretical networks represent extremes in
terms of efficiency and resilience (see figure 3). The
randomand scale-free networks provide amoremod-
erate reference point for values of d̂, λ̄ and τ .

Null-models provide a more realistic benchmark
for trade networks [70, 71]. One can generate the
randomized version of the empirically-observed net-
works by keeping certain topological characterist-
ics fixed with null-models [72]. The node degree
distribution is one of the most critical topological
characteristics as it is enough to predict other high-
order network statistics [73].Hence, we generate null-
model networks for empirical food trade networks
by keeping the node degree distributions fixed. For
year 2018, we use null-model estimations to com-
pare the observed topological efficiency and resilience
of each food commodity. Table 2 provides a sum-
mary of the theoretical, null, and empirical networks
considered.

3. Results

3.1. Topological network efficiency and resilience
Figure 2 provides d̂, λ̄ and τ for both theoret-
ical and empirical networks. Networks with a more
defined core-periphery structure (i.e. star and scale-
free networks) have greater efficiency (e.g. small d̂;
see figure 2(A)), which is consistent with the literat-
ure [69]. However, the structure of these networks is
dependent on core nodes, so their resilience against
the removal of the core nodes is low (e.g. high λ̄;
see figure 2(B)). Also, these networks are vulnerable
to spread risk since contamination in the core node
could rapidly transmit an epidemic in the whole net-
work (e.g. low τ ; see figure 2(C)). Conversely, net-
works with a lattice-like structure (i.e. random and
ring graphs) have high resilience due to the absence of
a core node (e.g. low λ̄; see figure 2(B)). Lattice-like
networks have normal and uniform degree distribu-
tions (see figure 3), so there is no superspreader node
to contaminate the whole network. However, the
average shortest path lengths of lattice-like networks
are relatively high, as multiple jumps are required to
establish a connection between any two nodes (e.g.
high d̂; see figure 2(A)). So, lattice-like network struc-
tures have low efficiency.

Numerical findings illustrate that there is a com-
petitive relationship between efficiency (̂d) and resili-
ence (for both λ̄ and τ ) when density is held constant
(see figures 11 and 12 in the SI). As density increases
the numerical metrics converge, indicating that dif-
ferences between types of networks fade as networks
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Figure 2. Topological efficiency and resilience metrics. (A) Efficiency is measured with average shortest path length, d̂.
(B) Resilience to removal of the node with most export connections is measured with the change in the dominant eigenvalue, λ̄.
(C) Resilience against spread risk is measured with the epidemic threshold, τ . The envelope of potential outcomes is shown by the
area between ring and star networks. Lattice-like topologies (i.e. ring and random networks) have higher average shortest paths
but lower change in dominant eigenvalues as well as higher epidemic thresholds. Core-periphery topologies (i.e. star and
scale-free networks) have lower average shortest path values but higher change in dominant eigenvalues as well as lower epidemic
thresholds. Numerical results are average of 1000 generated networks for each density and topology. Food trade data is shown
with the black diamonds.

become dense (see figure 2). Network density is the
fraction of existing links to the number of links that
could exist in the graph (refer to equation (12) in
the SI). Empirical networks (i.e. food trade networks
created with data from COMTRADE) exist across
the range of densities (see black points in figure 2).
Empirical networks that have relatively high densities
usually perform worse in λ̄, d̂ and τ when compared
with the scale-free networks. In scale-free networks,
multiple hubs exist that are connected to almost all
the nodes in the periphery. However, empirical net-
works have a higher number of hubs which are not
connected to all nodes in the periphery. This leads
scale-free networks to be more efficient than empir-
ical networks (i.e. smaller average shortest path, d̂, in
small-world networks). Also, λ̄ is smaller in scale-free
networks, as when one hub is removed the remain-
ing (smaller) hubs connect the rest of the nodes
in the network. Scale-free networks also have fewer

potential disease superspreaders, so they performbet-
ter in τ than empirical networks.

Food trade network values fall within the range
of null-model results in most cases (see figure 4). Val-
ues of d̂ are generally on the upper-end of the range
(see figure 4(A)) while λ̄ values fall on the lower-
end of the estimation range (see figure 4(B)). The
range of expected values for eachmetric narrows with
increased density. Individual food commodities are
sparser and their null-model ranges show higher vari-
ation. This is because sparse networks are more sens-
itive to changes to a single connection. Null-model
findings compliment theoretical results. Both the-
oretical and null-model comparisons highlight the
important role of the degree distribution in shap-
ing topological efficiency and resilience. Null-model
results provide a more realistic benchmark to global
trade, although the random rewiring may not share
a resemblance with the real-world countries or trade
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Figure 3. Schematic of topological efficiency and resilience by network type. Values of efficiency (̂d), resilience to node removal
(λ̄), and resilience to spread risk (τ ) are provided by network type. Competition parameters are presented to quantify the

competition between efficiency and resilience. α captures the competition between d̂ and λ̄; values of α= 1 indicate an efficient

network, values of α= 0 indicate a resilient network. β captures the competition between d̂ and τ ; values of β = 1 indicate an
efficient network, values of β = 0 indicate a resilient network.

links represented by the data. The theoretical net-
works provide insight into the performance of the
metrics in unrealistic (in terms of trade) but well-
studied networks. Null-model and theoretical net-
work findings compliment each other and enhance
our framework.

3.1.1. Competition parameters for unweighted
networks
The competitive relationship between efficiency and
resilience is a function of network density (see
figure 5). The competition between efficiency and
resilience to node removal becomes weaker as density
increases. As more connections are made in the net-
work the average shortest path length decreases (e.g. d̂
gets smaller, efficiency increases). With greater dens-
ity, the network relies less on a single node, as there
are multiple nodes with high out-degree to maintain
network structure. This means that both efficiency
and resilience to node removal increase as the net-
work becomes more connected. The ultimate case is
for a complete network with density equal to one. For
a complete network, both the efficiency and the resi-
lience against node removal are optimized by the net-
work. However, the competition between efficiency
and resilience to spread risk grows stronger as the
network density increases. This is because τ declines
with density, which means the chance of a disease
dying out decreases as all nodes are connected with
one another. Here, a complete network would have

the best efficiency but the lowest resilience against an
epidemic, since every node is a candidate for spread-
ing the disease throughout the network.

We introduce a scheme to assess the competition
between efficiency and resilience. Figure 3 presents
the competition parameters for topological networks
and how they relate to λ̄, d̂ and τ . We formulate
two competition parameters in equations (6) and (7),
which can be used to locate networks on the compet-
ition scale.

α=
λ̄

d̂+ λ̄
(6)

β =
1
τ

1
τ +d̂

. (7)

The first competition parameter, α, is formulated in
equation (6) to quantify the competition between
topological efficiency and resilience in terms of the
reliance on a single node to propagate flow. The
second competition parameter, β, is formulated in
equation (7) to quantify the competition between
topological efficiency and resilience against food-
borne disease spread in the network. Both competi-
tion parameters range from 0 to 1, with 0 indicating
the most resilient network and 1 indicating the most
efficient network.

In lattice-like topologies (i.e. random and ring
networks) gains in efficiency overpower the gains in
resilience against node removal as density increases
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Figure 4. Graphs of null-model estimates for topological efficiency and resilience metrics. (A) Average shortest path length, d̂,
(B) change in dominant eigenvalue, λ̄ and (C) epidemic threshold, τ , as well as the competition parameters (D) α and (E) β
estimates for all analyzed food commodities based on 2018 empirical networks. The null-model estimates provide the range of
potential outcomes for each metric and the empirically-observed values are represented within this range for each commodity by
black diamonds. Note that the empirically-observed values are located on the right of the null-model estimates for each
commodity.

(see figure 5(A)). Lattice-like values of α are smaller
for low densities and increase to 0.5 with increased
density. Conversely, the gains in resilience against
node removal overpower the efficiency gains in core-
periphery topologies (i.e. star and scale-free net-
works) as density increases. Core-periphery values of
α start close to 1 and go down to 0.5 with increased
density (i.e. α moves from efficient to balanced).
This indicates that the competition between d̂ and
λ̄ softens with increased network density. As density
increases, both lattice-like and core-periphery topo-
logies becomemore efficient, yetmore vulnerable (i.e.
less resilient) to spread risk. Figure 5(B) plots the
competition parameter, β, which increases towards
1 across all networks as density increases. Thus, β
sharpens with density. As density increases, different
network topologies become more similar, as do their
efficiency and resilience values. Therefore, the range
of the competition parametersα and β decreases with
density (see figure 13 in SI).

Empirical food trade networks are similar to
scale-free networks for α. At low densities, empir-
ical values of α fall between random and scale-free
networks. The low-density empirical food trade net-
works have multiple hubs but not as many as scale-
free networks. As density increases, scale-free net-
works gain more hubs, so their gains in resilience
exceeds the gains in resilience of empirical food trade
networks. However, around a density of 0.1 no new
hubs are introduced in scale-free networks, such that
empirical food trade networks are more resilient at
some higher densities (e.g. note the lower values of
α in empirical food trade networks vs. scale-free at
moderate densities in figure 5(A)). For β, low dens-
ity empirical food trade networks are similar to scale-
free. But as density increases, scale-free networks have
less hubs than do empirical food trade networks, lead-
ing food trade data to have higher β values around
density values of 0.1. Although the number of hubs is
higher in dense empirical food networks, they are not
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Figure 5. Topological efficiency and resilience competition parameters. (A) The competition parameter, α, between efficiency, d̂,

and resilience to node removal, λ̄. (B) The competition parameter, β, between efficiency, d̂, and resilience to spread risk, τ .
Numerical values are average of 1000 networks for each density and topology. Food trade data is shown with the black diamonds.

Figure 6. Efficiency and resilience metrics for weighted networks. (A) Resilience is measured with the remaining portion of total
mass flux after the removal of the major exporter, R(Γ). The envelope of potential outcomes is shown by the area between
uniform and extreme weight distributions. The break-point between normal and power-law weight distributions is provided as all
empirical food trade data falls within the R(Γ) range of the power-law weight distribution. Higher R(Γ) values indicate higher
values of resilience, in which a greater portion of the mass would remain in the network after the removal of the major exporter.
(B) Efficiency is measured with the inversely weighted average shortest path to account for link-based distance per mass traded,
E(Γ). The boundaries are set by the maximum and minimum E(Γ) values obtained across the numerical experiment. Numerical
results are average of 1000 generated networks for each density, weight distribution, total mass flux, and topology. Food trade data
is shown with the black diamonds.

as well-connected as scale-free hubs. Yet they still have
the potential to be significant disease spreaders, lead-
ing empirical food trade networks to have less resilient
values of β.

The empirically-observed competition paramet-
ers fall within the null-model range. Empirical α val-
ues are generally lower than null-model estimation
means (see figure 4(D)). This indicates that food trade
is less efficient and more resilient to targeted node
removal than the null model mean would suggest.
However, the empirically-observed β values are gen-
erally higher than estimationmeans since efficiency is
lower but resilience against spread risk is roughly the
same (see figure 4(E)).

3.2. Weighted network efficiency and resilience
Values of E(Γ) and R(Γ) are illustrated in figure 6
for combinations of network topologies and mass
flux distributions (e.g. uniform, normal, power-law
and extreme weight distribution; see figure 14 in SI).
As density increases while the total network weight
remains constant, themass per link decreases. Yet, the
length of the average shortest path also decreases as

density increases, such that the weighted efficiency
increases if the gains in shortest path lengths over-
power the loss in mass per link. The weighted effi-
ciency decreases if the loss in mass per link over-
powers the gains in shortest path lengths (see figure 15
in SI). As the total network weight increases, the
mass per link increases; hence, the weighted efficiency
increases (see table 10 in SI). So, for a network to be
more efficient it should transport more mass through
themost used links. According to these numerical res-
ults, if the node weights have a uniform or normal
distribution, then the lattice-like structures, i.e. ring
or random network topologies, result in greater effi-
ciency (see table 10 in SI). On the other hand, if the
node weights follow a power-law or extreme distri-
bution, then the core-periphery structures, i.e. scale-
free or star network topologies, with correlated node
degree and strength yield a better efficiency than do
lattice-like structures (see figure 15 in SI).

The value of R(Γ) is constant with density across
numerical weight distributions, since the weights
assigned to each node and total network weights
are constant (see figure 6(A)). In the numerical
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Figure 7. Cooperation in efficiency and resilience for weighted food trade networks. (A) Schematic of the cooperation scheme.
Networks that prioritize resilience over efficiency could be located by points 1 and 2. Networks that emphasize efficiency more
than resilience could be located in points 5 and 6. Networks that promote both efficiency and resilience simultaneously could be
indicated by points 3 and 4. Points that are closer to the origin (points 1, 3, 5) have smaller efficiency and resilience and are
considered less well-designed. Points that are further from the origin (points 2, 4, 6) have higher efficiency and resilience so they
are more well-designed. (B) Empirical values averaged over 2008–2018 for aggregated and individual food commodities.
(C) Change trend of the empirical value averages from 1965–1975 to 2008–2018 for both aggregated and individual commodities.
Start point of the arrow is 1965–1975 average, end of the arrow is the 2008–2018 average.

simulations, only the number of links connected to
each node varies across network topologies as the
node weight distribution and total mass are kept con-
stant. Hence, the resilience metric does not depend
on the topology but on the node weight distribution.
Resilience values above the brown line in figure 6(A)
have a normal weight distribution; values below the
brown line have a power-law weight distribution.
All empirical values are in the resilience range of
the power-law weight distribution, but have a more
homogeneousweight distribution as theymove closer
to the brown line. The empirical food network values
move from more to less extreme heterogeneity with
increasing density. In figure 6(B), aggregated food
commodities have both the higher density and total
mass. Their efficiency values are also higher. Again,
empirical E(Γ) values are within the bounds of the
power-law and normal weight distributions. Empir-
ical values are close to the normal weight distribu-
tion for low densities and become more power-law
as density increases. The empirical values that follow
the power-law weight distribution are the aggregated
food commodities.

Since resilience is constant by topology, network
structures that perform better in efficiency under the
same node weight distribution and same total net-
work weight promotes weighted efficiency and resi-
lience simultaneously. In an extreme weight distri-
bution a star network topology promotes efficiency
and resilience simultaneously; for a power-law weight
distribution the scale-free network topology (where
large mass exporters also have high node out-
degrees), promotes both efficiency and resilience
(see figure 15 and table 10 in SI). The random
network topology in combination with the normal
weight distribution promotes efficiency and resili-
ence simultaneously. Ring network topology with
a uniform weight distribution simultaneously pro-
motes efficiency and resilience. In brief, if the node
degree distribution correlates with the node strength

distribution under the assumption of constant total
weight, better efficiency and resilience is achieved (see
figures 15 and 16 in SI for a summary).

3.2.1. Cooperation parameters for weighted networks
When trade intensity is taken into account efficiency
and resilience can behave cooperatively. There are
various topology and weight distribution combina-
tions which achieve higher efficiency and resilience
simultaneously. To assess the relative cooperation
across networks, we introduce two cooperation para-
meters, ξ and ρ, to locate the networks on the graph
provided in figure 7(A). The cooperation parameters,
ξ and ρ, quantify the relationship between efficiency
and resilience as:

ρ=
(1− Ẽ(Γ))

R̃(Γ)
(8)

ξ = (1− Ẽ(Γ))+ R̃(Γ). (9)

More detailed information regarding the transition

from E(Γ) and R(Γ) to (1− Ẽ(Γ)) and R̃(Γ) respect-
ively, is provided in SI (also figures 17–19 in SI).

Note that ξ ∈ [0, 2] and ξ values of 0 indicate low
values of both efficiency and resilience (i.e. less well-
designed network). ξ values of 2 indicate relatively
high values of both efficiency and resilience (i.e. more
well-designed network). ρ captures if the network is
emphasizing efficiency or resilience more, or if the
two features are balanced. ρ values > 1 indicate the
network is prioritizing efficiency; values < 1 indic-
ate resilience is the priority. ρ values close to 1 indic-
ate a balance between efficiency and resilience. The

mean of (1− Ẽ(Γ)) and R̃(Γ) from 2008 to 2018 for
food trade are plotted in the cooperation scheme in
figure 7(B). ‘All agri-food’ exhibits the highest levels
of both efficiency and resilience (note black triangle
in figure 7(B) have the highest x− y location). In
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figure 7(C), the time trend for each commodity is rep-
resented from the average of metrics from 1965–1975
to 2008–2018. In figure 7(C), through time almost
all food commodity networks tend to prioritize resili-
ence (see arrow asmovement between 1965–1975 and
2008–2018 tomore resilient region of the cooperation
scheme). Please see table 3 for a summary of the com-
petition and cooperation parameters.

3.3. Competition and cooperation parameters over
time
The number of countries participating in trade and
the number of trade connections generally increased
from 1965 to 2018 (see table 4). The number of links
increased more than the number of trading coun-
tries, so the density of food trade increased over time.
In general, as the density of food trade increases the
topological efficiency and resilience to removal of the
core node increases. However, food trade networks
become more vulnerable to disease spread risk with
increased density. Figures 8(A) and (B) presents α
and β values through time. Values of α are more
variable prior to 1990 (especially in individual food
commodities), with a decreasing range after 1990
when trade becomes more dense. However, there
exists a time period around 1990–1996where the food
trade networks get sparse. At the same time period,
total trade amount also decreases for each food com-
modity (see figure 1). During this period, α values
tend to increase which means that networks prior-
itize efficiency more than resilience. As the sparsity
increases, reliance on the nationwith the largest num-
ber of export connections seems to be increasing
and networks get more vulnerable against targeted
node attacks. However, after the food trade networks
get denser, the criticality of a single nation tend to
decrease whereas networks get more resilient against
targeted node attack. As multiple nations become
‘hubs’, α values decrease and get closer to 0.5.

Food commodity groups balance efficiency and
resilience to node removal better than individual
food commodities. Individual food commodities are
generally prioritizing efficiency over resilience (see
table 5). This is reasonable as for a single commod-
ity, only a few countries have comparative advantages.
Hence, they mainly provide the export connections.
So, network efficiency is prioritized over resilience
(i.e. trade is from a few key nation to every other
nation but the network is highly dependent on key
nations to maintain the flow transmission). However,
α values are moving further away from 1 over time,
indicating the networks are starting to prioritize resi-
lience more over time. ‘All agri-food’ is the most resi-
lient to reliance on a single nation. This is sensible,
since there are multiple trade hub nations when all
agri-food commodities are considered. The ‘Grain’
network is the least resilient commodity group, with
the largest α values throughout the study time period

(see table 5). This lack of resilience in grain trade
has been exhibited in recent years, such as during
the 2007–08 world food crisis and in 2010–11 when
several major producers imposed export restrictions
[26, 74].

Figure 8(B) plots the competition between effi-
ciency and resilience to disease spread risk (β) over
time. Food trade networks are becoming more effi-
cient over time, at the expense of resilience to spread
risk (e.g. note increasing β values). This is sensible as
through time number of trade relations increase, as
well as the network density and connectivity. How-
ever, higher connectivity increases the potential for
a contamination to spread among traded food com-
modities. Similar to α, the range of β decreases with
time, which is consistent with the understanding that
as density increases β approaches 1. The least resi-
lient network against disease spread risk is the fish
trade (mean β = 0.94); the most resilient network is
the banana trade (mean β = 0.71) as fish trade has
the most dense whereas banana trade has the most
sparse network (see table 5). It is reasonable that the
fish trade is themost vulnerable to food-borne disease
spread, as disease risks associated with international
trade of aquaculture have been shown to be high [75].

Figure 8(C) plots ξ over time. For single food
commodities, the fish trade is the most well-designed
through time (i.e. highest ξ value). The fish trade has
the highest density of all individual food commodit-

ies, as well as the highest 1-Ẽ(Γ) and R̃(Γ) values (see
table 4). This is because fish trade also has the largest
total mass flux and more of a correlated power-law
like node degree and weight distribution among its
exporter nations. The least well-designed food com-
modity trade is soy, which has the lowest values of

1-Ẽ(Γ) and R̃(Γ). Soy has the lowest network dens-
ity and its low total mass flux punishes its efficiency,
whereas having almost an extreme weight distribu-
tion among its exporter nations punishes its resilience
values. Mean ξ of fish trade is 1.45, while it is 0.72 for
the soy trade (see table 5). ‘All agri-food’, ‘meat’ and
‘vegetables and fruits’ commodity groups exhibit the
highest ξ values over time, indicating that these net-
works have the highest levels of both efficiency and
resilience to mass flux disruption. These groups of
food commodities have high densities, and achieve

relatively high 1-Ẽ(Γ) and R̃(Γ) values with high total
network mass fluxes. More importantly, the power-
law like node degree and strength distributions of the
exporter nations highly correlate in these commod-
ity trades. Again, ‘Grain’ stands out as the least well-
designed network, compared with other aggregated
food commodities. The grain trade has the highest
reliance on a single exporter and has the lowest effi-
ciency in its trade connections in terms of distance per
mass transported. This is mainly driven by low dens-
ity and high heterogeneity in weight distribution of
exporters.
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Table 3. Trade-off parameters to assess the relationship between efficiency and resilience. A competitive relationship is uncovered
between efficiency and resilience in topological networks, so a ‘competition parameter’ is presented for topological networks. A
cooperative relationship is uncovered between efficiency and resilience in weighted networks, so a ‘cooperation parameter’ is presented
for weighted network.

Competition parameters for topological networks

Symbol Equation Definition

α λ̄

d̂+λ̄
Competition between topological efficiency and resilience against targeted node removal

β
1
τ

1
τ
+d̂

Competition between topological efficiency and resilience against contamination spread

Cooperation parameters for weighted networks

Symbol Equation Definition

ρ 1−Ẽ(Γ)

R̃(Γ)
Ratio between weighted efficiency and resilience

ξ 1− Ẽ(Γ)+R̃(Γ) Sum of weighted efficiency and resilience

d̂: average shortest path length, topological efficiency metric.

λ̄: change in dominant eigenvalue, topological resilience metric for targeted node removal.

τ : epidemic threshold, topological resilience metric for contamination spread among food commodities.

Ẽ(Γ): inversely weighted average shortest path length (scaled), weighted efficiency metric.

R̃(Γ): remaining total mass percentage (scaled), weighted resilience metric for targeted node removal.

Table 4. Efficiency and resilience metrics for food trade networks from 1965 to 2018. The mean of each variable over the time period is
provided, as is the % change from 1965 to 2018.

Commodity Density % λ̄ % τ % d̂ % R(Γ) % E(Γ) %

Apple 0.039 124.56 8.11 53.53 0.085 −77.17 2.87 −24.17 0.80 20.91 0.64 −15.78
Banana 0.035 108.87 1.96 −40.26 0.151 −81.79 3.08 9.48 0.76 1.69 0.71 70.49
Beef 0.053 9.88 5.64 −310.26 0.053 −83.99 2.59 −2.84 0.84 4.20 0.61 −3.10
Chicken 0.041 164.03 6.96 −86.25 0.083 −76.56 2.72 −16.87 0.70 10.16 0.63 −30.48
Fish 0.090 82.63 5.08 −60.91 0.031 −54.52 2.21 −10.35 0.86 −1.04 0.50 −19.16
Maize 0.040 144.04 9.12 −64.35 0.081 −79.87 2.92 −24.38 0.46 60.31 0.66 12.51
Pork 0.037 39.62 5.65 −33.88 0.069 −62.34 2.64 −0.98 0.75 61.58 0.64 −0.73
Potato 0.052 237.69 10.81 −71.88 0.061 −76.51 2.70 −27.96 0.73 7.26 0.57 −14.31
Rice 0.053 136.08 9.57 −80.00 0.072 −79.17 2.70 −7.48 0.72 3.62 0.59 25.51
Soy 0.037 60.09 9.96 −89.25 0.155 −91.64 3.01 2.02 0.38 329.74 0.71 46.57
Tomato 0.046 223.10 7.20 110.60 0.092 −86.25 2.81 −16.04 0.76 11.66 0.66 −5.91
Wheat 0.036 50.26 5.94 −176.91 0.104 −374.46 2.90 −1.85 0.69 21.73 0.61 32.05
Grain 0.117 58.31 4.74 −56.43 0.027 −56.41 2.16 −8.87 0.63 41.80 0.41 −1.65
Meat 0.150 44.76 3.53 −65.84 0.021 −49.09 1.97 −6.15 0.89 1.47 0.38 −11.72
Vegetables
and fruits

0.171 36.23 3.60 −59.51 0.019 −48.40 1.94 −3.03 0.90 3.67 0.37 1.07

All agri-
food

0.312 52.00 2.13 −57.97 0.012 −47.82 1.71 −9.08 0.78 20.87 0.27 −4.34

For the ρ parameter, values closer to 1 indic-
ate networks that are promoting efficiency and resi-
lience simultaneously. ρ values that are larger than
1 represent networks that are prioritizing efficiency
more; ρ values smaller than 1 represent networks that
are prioritizing resilience more. Figure 8(D) shows ρ
over time. Prior to 1990, the soy and maize trade ρ
values fluctuated substantially. Yet, single food com-
modities have become more similar in recent dec-
ades, with values smaller than, but close to 1. This
indicates that individual commodity networks have
been prioritizing resilience more in recent decades
(see figure 8(D)). This means that multiple nations
start to participate in the mass supply in individual
food commodities rather than a single major mass

supplier. However, as both density and total mass flux
increases through time, the efficiency (i.e. link-based
shortest distance per mass trade) does not change a
lot. The range of ρ parameter values is smaller for
food commodity groups over time. This is because
aggregated food commodities have similar weighted
efficiency and resilience values. ‘Grain’ and ‘all agri-
food’ have improved their resilience over efficiency
with time (ρ moving from 1 to 0.8; see figure 8(D)).
The trade of ‘vegetables and fruit’ and ‘meat’ also ten-
ded to improve resilience over efficiency with time (ρ
moves towards 0.6 from 0.8). This could be explained
by that multiple nations participate in mass sup-
ply through time. However, the link-based shortest
distance per mass does not change a lot in these
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Figure 8. Time series of the trade-off parameters between efficiency and resilience. (A) Competition between efficiency and
resilience to node removal in unweighted networks, α. (B) Competition between efficiency and resilience to disease spread in
unweighted networks, β. (C) ξ measures cooperation through the sum of weighted efficiency and resilience. (D) ρmeasures
cooperation through the ratio between weighted efficiency and resilience.

Table 5. Competition and cooperation parameters for food trade networks from 1965 to 2018. The mean of each variable over the time
period is provided, as is the % change from 1965 to 2018.

Commodity α % β % ξ % ρ %

Apple 0.69 30.55 0.81 39.42 1.24 23.90 0.46 8.06
Banana 0.27 −28.38 0.71 50.45 1.13 −22.90 0.40 −58.84
Beef 0.64 −62.66 0.88 7.16 1.31 4.21 0.47 −0.49
Chicken 0.66 −49.36 0.82 34.06 1.14 32.37 0.54 87.26
Fish 0.68 −23.62 0.94 6.65 1.45 6.54 0.58 22.92
Maize 0.74 −19.11 0.81 44.76 0.86 21.10 0.87 −47.68
Pork 0.65 −17.58 0.85 14.86 1.19 36.84 0.49 −37.40
Potato 0.77 −21.03 0.86 23.58 1.23 11.15 0.59 10.59
Rice 0.75 −32.67 0.84 25.56 1.20 −7.73 0.57 −26.75
Soy 0.66 −39.19 0.71 117.75 0.72 26.16 1.26 −87.59
Tomato 0.66 51.23 0.80 49.79 1.19 10.61 0.46 −2.81
Wheat 0.61 −53.40 0.78 26.58 1.15 −2.37 0.60 −51.25
Grain 0.68 −22.55 0.95 4.69 1.27 21.06 0.93 −28.72
Meat 0.63 −38.44 0.96 3.00 1.58 3.86 0.67 5.98
Vegetables and fruits 0.63 −29.54 0.96 2.33 1.61 1.95 0.68 −4.05
All agri-food 0.54 −31.12 0.98 1.46 1.57 11.37 0.90 −16.00

commodity groups either, as total mass flux increases
are complimented by density increases. In recent
decades, gains in network density and total mass
flux have led aggregated food commodity groups to
become more similar in terms of their efficiency and
resilience.

Almost all food commodities tend to become
more resilient through time. This trend is observable

in figure 7(C) where themovement of (1− Ẽ(Γ)) and

R̃(Γ) averages from 1965–1975 to 2008–2018 is plot-
ted for each commodity. As in figures 8(C) and (D), ρ
values seem to generally decrease from 1965 to 2018.
At the same time, ξ values tend to increase. These sim-
ultaneous trends in the cooperation parameters are
the result of food trade networks prioritizing resili-

ence more (recall that R̃(Γ) is in the denominator of
ρ and summed in ξ).

3.4. Comparison between unweighted and
weighted networks
Here, we perform additional analysis to confirm
that differences in our results between unweighted
and weighted analysis are not driven by changing
the efficiency and resilience metrics. Specifically,
we compute the weighted network efficiency E(Γ)
and resilience R(Γ) metrics on the same adjacency
matrices used in the unweighted analysis. The adja-
cency matrices are binary, e.g. they include entries
of only 0 and 1, indicating whether a trade relation-
ship exists between two nations or not. This means
that node out strength (i.e. mass export for nations)
becomes node degree (i.e. number of export connec-
tions of nations).

Now, the weighted efficiency metric E(Γ) col-
lapses to the topological efficiency metric, d̂. The
weighted resilience metric R(Γ), when applied to the
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adjacency matrices, determines the portion of con-
nections remain after the elimination of the nation
with highest number of export connections. E(Γ)
and R(Γ) for unweighted networks are formulated
in equations (10) and (11) respectively, where Di

out

stands for the out degree of node i.

E(Γ) =
1

N(N− 1)

∑
(i,j):i̸=j

dij
1

(10)

R(Γ) =

∑
iD

i
out −max(Dout)∑

iD
i
out

. (11)

According to the unweighted version ofR(Γ), net-
works that have a more homogeneous distribution of
export connections would be classified as more resili-
ent. If themajority of export connections is not under
the responsibility of a single nation, the food trade
networkwould havemultiplemajor exporters. In case
of a local disruption in one of the major exporter
nation, the system would still be able to maintain its
structure and the majority of its connections. In this
case, higher R(Γ) values would be computed, indic-
ating higher network resilience.

As it is seen in figure 20(A) in SI, unweighted
R(Γ) values for numerically-generated theoretical
and empirical food trade networks increase as dens-
ity increases. As networks have more connections,
multiple nations get more export relations therefore,
the portion of all export links on a single major
exporter become relatively less important. There-
fore, networks get more resilient as they become less
dependent on a single major exporter to maintain the
structure. However, as in figure 20(B), unweighted
E(Γ) values decrease as density increases. As dens-
ity increases, number of connections in the network
increases. Hence, average link-based shortest path of
the network gets smaller. This means that networks
becomemore efficient, since more direct connections
form between any two nation. From (A) and (B) in
figure 20, we observe that core-periphery structures
have lower R(Γ) and lower E(Γ) values. Hence, star
and scale-free networks are less resilient but more
efficient. On the contrary, lattice-like structures have
higher R(Γ) and higher E(Γ) values. So ring and ran-
dom networks are more resilient but less efficient.

More precisely, we have plotted R(Γ) vs E(Γ)
for unweighted networks in various densities. As
density kept constant, the competition between effi-
ciency and resilience metrics becomes more clear. In
figures 20(C), (E) and (G), theoretical and empirical
networks with density 0.02, 0.14 and 0.26 are com-
pared respectively. In all density values, star networks
have the lowest resilience against the elimination of
the major exporter nation. Then, the ascending resili-
ence order follows as scale-free, random and ring net-
works since higher R(Γ) stands for higher resilience.
However, the complete opposite ordering is observed
when the efficiency metric E(Γ) is considered. For all

densities, ring networks have the lowest connection
efficiency. Then, the ascending efficiency order fol-
lows as random, scale-free and star networks since
lower E(Γ) stands for higher efficiency.

Lastly, we compared unweighted R(Γ) and λ̄met-
rics to compute the consistency between these two
metrics. In figures 20(D), (F) and (H), for network
densities of 0.02, 0.14 and 0.26 both the numerically-
generated and empirical networks (with close density
values) are plotted. Due to the formulation of R(Γ)
and λ̄, higher R(Γ) stands for higher resilience while
lower λ̄means higher resilience (see section 2). There-
fore, in all figures, both metrics classify lattice-like
topologies as more resilient and core-periphery topo-
logies as less resilient.More specifically, ring networks
have the highest R(Γ) and lowest λ̄ values. Then, it
is followed by random, scale-free and star networks
where star networks has the lowest R(Γ) and highest
λ̄ values.

Thus, we conclude that (a) the change in the
nature of relationship between resilience and effi-
ciency between unweighted and weighted analyses is
not driven by differences in the metrics. By imple-
menting the weighted resilience, R(Γ), and efficiency,
E(Γ), metrics in unweighted networks, we prove that
the competitive relationship still exists. Cooperation
is observed when heterogeneous weight distributions
are included. This means that our findings are driven
by the heterogeneous intensities of food trade, rather
than the definitions that we employ to quantify effi-
ciency and resilience in our comprehensive frame-
work. Secondly, we conclude that (b) both resilience
metrics R(Γ) and λ̄ gives a consistent understand-
ing for all density values and for all unweighted net-
work topologies. Both metrics assess network resi-
lience in terms of reliance on a single nation for
maintaining the network structure, but with differ-
ent formulations. Both formulations enable us to
confirm that lattice-like topologies are more resilient
than core-periphery structures against this specific
threat. Therefore, the comparison between weighted
and unweighted network efficiency and resilience is
consistent throughout our study.

4. Concluding remarks

This study presented a comprehensive network
framework to evaluate the relationship between effi-
ciency and resilience in global food trade networks.
To our knowledge, this is the first integrated assess-
ment of the trade-off between efficiency and resi-
lience that accounts for both topological structure
and trade intensities. We include resilience to both
spreading risk and targeted node attack in the frame-
work. We provide the potential range of outcomes
from numerically-generated theoretical networks to
better understand the empirical results. Addition-
ally, we generate null-model statistical networks to
benchmark the empirical results.
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Increased connectivity of global food trade
increases its efficiency at the expense of its resili-
ence to spreading risk, corroborating the findings of
Ercsey-Ravasz et al [10]. Yet, we also find that our
understanding of the relationship between efficiency
and resilience changes depending on the risk con-
sidered and when the intensity of trade relationships
are explicitly taken into account. Networks can sim-
ultaneously promote efficiency and resilience under
correlated node degree and weight distribution com-
binations. Indeed, we find that food trade networks,
particularly those of aggregated commodities, pro-
mote both efficiency and resilience to the targeted
removal of the most important mass exporter nation.
This finding is distinct to previous research which
suggests that increased connectivity and efficiency
necessarily reduces resilience in global food trade
networks [24, 76].

This study highlights the importance of expli-
citly including weights in network analyses of global
food trade. Future research could build on this study
by developing an economics framework to analyze
the relationship between efficiency and resilience in
food trade networks. Additionally, the physical travel
distances and related costs could be incorporated to
enhance realism in the definition of network effi-
ciency. Additional scenarios of production and trade
shocks could be explored to determine resilience
outcomes. For example, more conservative scenarios
could be evaluated, where a fraction of links are
removed, rather than the targeted attack and sub-
sequent removal of the major exporter nation. Our
statistical approach could be compared with scen-
arios to determine where they are similar and dif-
ferent. Importantly, a dynamic model with behavi-
oral changes following a disturbance, such as redis-
tribution of trade links, would improve our ability
to capture the adaptive responses that may impact
resilience.
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