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Abstract
Food supply chains are essential for distributing goods from production to consumption points.
These complex supply chains are important for food security and availability. Recent research has
developed novel methods to estimate food flows with high spatial resolution, but we do not
currently understand how fine-grained food supply chains vary in time. In this study, we use an
improved version of the Food Flow Model to estimate food flows (kg) between all county pairs
across all food commodity groups for the years 2007, 2012, and 2017 (which requires estimating
206.3 million links). We then determine the core counties to the US food flow networks through
time with a multi-criteria decision analysis technique. Our estimates of county-to-county food
flows in time are freely available with this paper and could be useful for future research, policy, and
decision-making.

1. Introduction

Food supply chains are complex systems that incor-
porate production, distribution, intermediate pro-
cessing, and consumption of food commodit-
ies (Porkka et al 2013, MacDonald et al 2015). Recent
studies have estimated food flows with high sub-
national spatial resolution (Lin et al 2019), but we
do not currently understand how fine-grained food
supply chains vary in time. Food supply chains
propagate and attenuate shocks (Heslin et al 2020,
Gomez et al 2021, Karakoc and Konar 2021), embody
resources (Weber and Matthews 2008, Dang et al
2015, Robinson et al 2016, Metson et al 2020), and
depend upon infrastructure (Attavanich et al 2013).
Estimates of how high-resolution food flows vary in
time would enable an assessment of spatiotemporal
risks in food supply chains, critical infrastructure, and
environmental footprints. The goal of this paper is to
estimate food flows between counties in the United
States for multiple years (e.g. 2007, 2012, and 2017)
and identify the counties that are core to the network.

The United States is an important nation in the
global food system. It is a major producer, consumer,
and trade power in agri-food commodities (Xu et al

2011, Konar et al 2018). The US produces over
50% of the world’s soybean and 30% of the world’s
corn (2020b). The US also accounts for significant
fractions of the world’s export market for sorghum
and wheat (70% and 25%, respectively) (2020b). The
US is also a key nation for global processed food trade.
In fact, the US is the top exporter of processed food
commodities with an average of 16.19% of market
share between 1980 and 2012 (Baiardi et al 2015). It
is also the top importer nation for processed foods
with 13% of market share in 2018 (Suanin 2021).
Climate change is likely to influence domestic grain
transport in both volumes and modes within the
US (Attavanich et al 2013), making it important to
understand current patterns.

The US also has widely available data to enable
data-driven studies of its food supply chain. Of
particular importance, the commodity flow survey
(CFS) and freight analysis framework (FAF) provide
comprehensive data on freight movement among
the 132 FAF zones within the US, which repres-
ent states and major metropolitan areas. Note that
the CFS/FAF data is only available every 5 years
(years ending with ‘2’ and ‘7’) and for coarse com-
modity categories, rather than individual items. The
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availability of CFS/FAF data within the US enabled
Lin et al (2019) to develop the Food Flow Model
to estimate food flows between counties. The Food
Flow Model is a data-driven approach to estimate
food flows between counties in the US that integ-
rates machine learning, network properties, produc-
tion and consumption statistics, mass balance con-
straints, and linear programming (Lin et al 2019). The
Food Flow Model was initially developed for a single
year (e.g. 2012). In this paper, we extend the Food
Flow Model in time with some improvements to the
original model.

This study builds upon the previous literat-
ure of agri-food flow modeling within the United
States. Smith et al (2017) estimated the movement of
corn used as biofuel among the counties of the US
with a transportation optimization model. Lin et al
(2014) analyzed the network properties of the state-
level US food flows, finding a power-law relation-
ship between node betweenness centrality and node
degree, indicating potential network vulnerability to
the disturbance of key nodes. Konar et al (2018) stud-
ied how the statistical network properties of US food
flows compares with global food trade and village
scale food sharing. Konar et al (2018) concluded that
nodal mass flux follows a Gamma distribution across
the full range of spatial scales, which means that there
is high heterogeneity in the distribution of foodmass,
such that themajority of nodes exchange smallmasses
of food, while some outlier nodes exchange large
quantities of food. This observation was a key insight
in the development of the Food Flow Model in Lin
et al (2019), which preserves this high mass flux het-
erogeneity through maintenance of the Gamma dis-
tribution of mass flux at the county spatial resolu-
tion (Lin et al 2019). Note that all of these studies
examined spatial patterns and did not consider the
time trends in domestic food flows. We build on this
literature by continuing to focus on fine grained spa-
tial fluxes of food, but with the additional considera-
tion of time.

The goal of this study is to estimate food flows
between all county pairs in the United States through
time. To do this, we apply an improved version of the
Food Flow Model (Lin et al 2019), which is a data-
drivenmodel, to quantify high spatial resolution agri-
food commodity fluxes within the US for the years
2007, 2012, and 2017. We then use our estimates to
determine the core counties to the US food flow net-
works over time. The research questions that guide
this study of food flows in the United States are: (a)
Howdo the food flow network properties change over
time? (b)Which counties and links participate in food
flows over time? (c) What are the core counties over
the study period? We briefly present our data, over-
view the Food Flow Model, and our improvements
in section 2. Our findings are presented in section 3.
We discuss our results in section 4 and conclude in
section 5.

2. Methods

We extend the Food Flow Model developed by Lin
et al (2019) to estimate food flows between US
counties for the years 2007, 2012, and 2017. The Food
Flow Model is a data-driven approach that incor-
porates logistic regression, gamma regression (with
a gravity model structure), mass balance, and linear
programming. A schematic of The Food Flow Model
is provided in figure 1 (see the supporting inform-
ation for a more detailed description of the original
Food Flow Model). We introduce three key improve-
ments: (a) systematic handling of estimator selection,
(b) smoothing distance data, and (c) a quantitative
approach to select the core nodes. We provide a brief
overview of the Food Flow Model below; the inter-
ested reader is referred to Lin et al (2019) for a full
description. We describe our model improvements in
more detail below.

2.1. Input data
The Food Flow Model relies on empirical data to
estimate county-level food flows. Input data include
multiple factors such as the geography of produc-
tion, transportation, input-output requirements, and
consumption that combine to determine food trans-
port (Lin et al 2019). In the model, consumption is
not restricted to the purchase of final goods by house-
holds, but instead also accounts for the intermedi-
ate stages in supply chain production and processing.
Hence, the transformation of commodities from raw
to more refined items is also considered to be con-
sumption. For example, live animals that are sent to
a slaughterhouse are transformed into meat, so the
counties containing the slaughterhouses consume the
live animals and produce meat.

The FAF data is a key input to the Food Flow
Model (2020b). FAF information is available for the
years 2007, 2012, and 2017, as FAF3, FAF4, and FAF5,
respectively. FAF provides information on the trans-
fer of commodities within the 132 FAF zones of the
US. The Food Flow Model relies on the FAF data-
base which reports commodity flows by the stand-
ard classification of transported goods (SCTG). Thus,
the Food Flow Model inherits the SCTG commod-
ity categories and definitions. The agricultural and
food commodities included in this study are listed in
table 1.

Statistical information on the production, pop-
ulation, and personal income for each county and
study year are used. For unprocessed agricultural
commodities, production data is obtained from the
US Department of Agriculture (2020a). For pro-
cessed food items, per industry revenue in thousand
US dollars is computed for each county by com-
bining the SCTG-NAICS crosswalk table (Lin et al
2019), NAICS codes, and I-O accounts table (2020b).
Since processed foods (SCTG 05-07) require industry
inputs, we considered the corresponding SCTG 05-07
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Figure 1. Schematic of the food flow model reproduced from Lin et al (2019). © The Author(s). Published by IOP Publishing Ltd
CC BY 3.0. The food flow model is a data-driven framework that incorporates a variety of statistical methods.

Table 1. List of SCTG food commodity groups in this study.

SCTG code Food commodity

01 Live animal and fish
02 Cereal grains
03 Agricultural products (except for animal

feed, cereal grains, and forage products)
04 Animal feed, eggs, honey, and other

products of animal origin
05 Meat, poultry, fish, seafood, and their

preparations
06 Milled grain products and preparations, and

bakery products
07 Other prepared foodstuffs, fats, and oils

production industry revenues as supply level indicat-
ors of counties.

The last set of required data is the geodesic dis-
tance between counties obtained from Oak Ridge
National Laboratory (2020a) and port trade data
from the US Bureau of Transportation Statist-
ics (2020). The geodesic distance is a simplification
of real-world transportation path lengths which is
a commonly used distance measure for the grav-
ity model of trade (De Benedictis and Tajoli 2011,
Shepherd 2013). Port data is used to boost the food
flows to/from the counties that contain the ports as
they are assumed to be the main transit hubs for
import and export. All input data along with a brief
description of how they are utilized in the Food Flow
Model are listed in table 2. Additional details regard-
ing input data are provided in the SI (available online
at stacks.iop.org/ERL/17/034035/mmedia).

2.2. Improvements to the food flowmodel
We introduce three key improvements to the original
Food Flow Model:

(a) Systematic handling of estimator selection. The
logistic and gamma regression components of
the Food Flow Model are the only part of the

methods that are sensitive to parameter values.
A high number of variables might cause over-
fitting and introduce noise to the regression,
while a low number of variables could decrease
the model accuracy. To balance overfitting with
accuracy and improve model reproducibility, we
implement a grid-based search approach in the
improved version of the Food Flow Model. This
allows us to achieve area under the curve (AUC)
measures in the 0.78–0.94 range across our study
time period and commodity categories with the
number of variables between 7 and 10 out of 130
possibilities.

(b) Smoothing distance data. The value of trade is
negatively correlated with distance in the grav-
ity model (Shepherd 2013). We winsorize the
inter-county distance values (Ghosh and Vogt
2012) to avoid high flow estimates between small
counties. Winsorization is a common technique
in economics to modify the values of outliers
to bring them closer to the other sample val-
ues (Hwang et al 2011, Orth 2013). Additionally,
large self-loop flowswere driven by counties with
small areas in the original Food Flow Model. To
avoid this issue, self-loop area is now set equal to
the mean of all self-loop distances to remove the
effect of extremely small counties. Flow assign-
ment is nowmainly driven by the other variables,
such as production and income (see SI for amore
detailed explanation).

(c) Quantitative approach to select the core nodes.
To determine the core nodes over time we adopt
TOPSIS, a multi-criteria decision analysis tech-
nique. TOPSIS is a commonly used approach to
determine the importance of network compon-
ents (Du et al 2014, Hu et al 2016, Karakoc et al
2020) as it ranks the components based on their
pre-determined criteria performances (Hwang
and Yoon 1981). We use node betweenness
centrality and degree (Ercsey-Ravasz et al 2012,

3
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Table 2. A list of the data that is used in this study.

Name References Description Purpose

Freight Analysis
Framework (FAF)
Version 3, 4, 5

Oak Ridge National
Laboratory (2020b)

Freight movement between FAF
zones with information on origin
destination pair, commodity
type, transportation-mode and
value both in US dollars and
thousand tonnes.

Commodity flow in FAF data is
used for (i) developing the
regression models to estimate the
food flows, and (ii) introducing the
mass balance constraint for county
food flows.

Population United States
Census
Bureau (2020a)

Population data per county. Population data is included in the
regression models to estimate the
county demand levels.

Personal Income US Bureau of
Economic
Analysis (2020a)

Personal income data per county. Personal income data is included in
the regression models combined
with Input–Output Accounts table
to determine the final county
demand levels per SCTG.

Unprocessed Food
and Livestock
Production

United States
Department of
Agriculture (2020a)

Agricultural production data for
each crop type and inventory
counts for livestock per county.

The US Department of Agriculture
census is included in the gamma
regression models to estimate the
food flow amounts between
counties.

Input–Output
Accounts Data

US Bureau of
Economic Analysis
(2020b)

This supply chain data represents
one industry’s requirement
degree for another industry’s
output. The required input is to
produce unit dollar output.

The requirement coefficients of
SCTG 05-07 are multiplied by
production data of SCTG 01-04 to
determine the need of each industry
per commodity. The sum of
industry and end consumer input
needs per commodity represents
county’s total consumption. This is
used in gamma mixture hurdle
model for link prediction and flow
amount estimation.

Port Trade US Bureau of
Transportation
Statistics (2020)

Data for commodity trade from
sea, air, and land ports in the
United States

The counties where these ports are
located in are considered as the
transit hubs for import and export.
Port trade values of SCTG
commodities (in US dollars) are
used in gamma regression models
to boost up the flows of food
to/from these certain counties.

North American
Industry
Classification
System (NAICS)

United States
Census Bureau
(2020c)

This production-oriented NAICS
data groups industries according
to similarity in their production
processes.

NAICS data, I-O Accounts table,
and SCTG-NAICS crosswalk table
are used together with agricultural
production data to compute
industry specific consumption of
each SCTG food commodity. By
using the consumption levels as
input requirements per one dollar
output, county revenues are
calculated for each NAICS code.

SCTG-NAICS
Crosswalk table

Food flows between
US counties (Lin
et al 2019)

This table matches NAICS codes
with SCTG codes based on the
industry input requirement of
commodities.

This table is used with I-O
Accounts table to compute NAICS
code specific county revenue. The
computed industry revenue data is
included in the gamma regression
models to estimate the flow
amounts between counties.

County-to-County
Distance Matrix

Oak Ridge National
Laboratory (2020a)

The geodesic distance between
county centroids based on their
latitude and longitude
information.

The regression models consider
distances between all county-pairs
to estimate the existence and
strengths of the links. Also, linear
programming algorithm uses
distance matrix to assign the food
flows to the shortest paths.

Land Area Coverage
Per County

United States
Census
Bureau (2020b)

The land area coverage in square
miles per US census area.

In the regression models, the land
area in per county is used as the
distance measures for self-loops.
The square are in miles is converted
into meters.
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Table 3. List of the original and improved components of the food flow model.

Original model

Model component Functionality

Logistic regression Binary logistic regression is used to estimate the existence of flow links between FAF zones
based on the available independent variables. It estimates two possible outcomes and then the
outcome values are coded as either ‘1’ or ‘0’ indicating the ‘existence’ or ‘non-existence’ of a
link between any two FAF zone, respectively. Once the desired level of model accuracy is
achieved in the FAF scale, it is implemented on the county scale.

Gamma regression Since food mass fluxes follow the gamma distribution (Konar et al 2018), gamma regression
is used to estimate the flow capacities (i.e. weights) of the links between counties based on the
available independent variables. The shape of the gamma distribution could be interpreted as
the effective units of food commodity that is actually delivered from origin to destination
apart from the wasted amount during transit (Lin et al 2019). Through the gamma regression
model, between 3% and 10% of link weights across all SCTG commodities are
underestimated. To satisfy the total mass balance of FAF data, a separate gamma regression
model is developed for underestimated links to boost their weight and achieve mass balance.
To boost the weight estimates, available port data is introduced to the second gamma
regression as a separate variable. Similar to logistic regression, the two gamma regressions are
first implemented on FAF scale and then on the county scale.

Linear programming Linear programming component aims to minimize the total transportation cost (i.e. travel
distance per unit commodity) in the county food flow network. It is a common approach in
supply chain transportation studies (Klein 1967). As it is based on the gravity-model, l Linear
programming also assigns food flows between counties to the link with largest capacity. It is
another common approach in supply chain studies to deliver the goods among origin and
destination pairs in the most efficient way (Chen et al 1999, Schrijver 2002).

Mass balance Mass balance is introduced as a constraint in the linear programming component of the Food
Flow Model. Sum of the total outflow/inflow of counties that are located in a single FAF zone
is matched with total outflow/inflow of that corresponding FAF zone. Additionally, mass
balance is included in the gamma regression. Sum of the estimated link weights is compared
with the empirical total flows per FAF zone. Once the underestimated link weights are
identified, a second gamma regression is implemented on them to match the total FAF mass
in the estimations.

Gravity-model The gravity model of international trade proposes that the trade flows are inversely correlated
with the distances between origin and destination pairs (Disdier and Head 2008). Both the
regressions and linear programming components of Food Flow Model is based on the
gravity-model of trade. Hence, shorter distances between counties are assigned with higher
flow capacities.

Model improvements

Model component Functionality

Grid-based search A grid-based search is introduced to the logistic and gamma regression components of the
Food Flow Model. By using grid-based search, the trade-off between overfitting due to high
number of estimators and underfitting due to low number of estimators is balanced.
Accuracy measure (AUC) in range 0.78–0.94 is achieved with 7–10 estimators for each
commodity for each study year.

Winsorizing To avoid extremely high flow estimates between small counties, winsorizing technique is
introduced to the Food Flow Model. By winsorizing technique, value of extremely small
outliers, 1.5% of the inter-county distances, are brought up the first quantile of the
distribution. Hence, effect of extremely small distances on flow estimation is overpowered by
other estimators i.e. production, population, etc.

TOPSIS A multi-criteria decision analysis technique, TOPSIS, is introduced to the Food Flow Model
in order to methodologically identify core nodes. Counties are ranked based on their score
for two criteria, node degree and betweenness centrality. For each commodity network in
each study year, counties with highest aggregated score for degree and betweenness are
determined as core.

Gaur et al 2020) (see section 2.3) to assess the
core counties in each study year (see SI for more
details).

Table 3 lists the original and improved compon-
ents of the Food Flow Model. Additional details are
provided in the SI.
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Figure 2. Total mass flux of food flow networks over time by SCTG commodity. Note the mass flux increases from 2007 to 2017,
but is lowest in 2012, which was a drought year in the Corn Belt and Central Valley. The total mass flux of county and FAF
networks are perfectly matched due to the mass balance constraint of the Food Flow Model.

2.3. Food flow networks
We construct food flow networks for FAF data and
our county-scale estimates. Nodes (N) are the spa-
tial locations that serve as the origin and destination
of food flows (e.g. FAF zones, counties). Links (L)
indicate connections between origin (o) and destin-
ation (d) nodes. Link weight is the mass flux between
nodes. Density (d) is the ratio of existing links over
the potential number of links, including self-loops:
d= L

N∗N . The core nodes are defined to be those
with both high total degree and betweenness central-
ity. Total degree is cototal =

∑N
d lod +

∑N
d ldo (Barabási

2016). Node betweenness centrality is the portion
of network shortest paths, σ, that pass through that
node over all potential shortest paths in the net-

work and is given by bo =
∑

s̸=o≠t
σo
st

σst
. Nodes with

higher betweenness centrality are located on more
shortest paths in the network and are more central
to the national network structure (White and Bor-
gatti 1994). We explain our multi-criteria decision
approach to core node selection in the SI.

3. Results

In this section, we answer the research questions listed
in section 1. We compare county estimates with FAF
data to address each question.

3.1. How do the food flow network properties
change over time?
There are 123 nodes (i.e. FAF zones) in the FAF3 data
for 2007; the number of nodes increases to 132 in 2012
and 2017. This means that there are 15 129 potential
links at the FAF zone spatial scale in 2007 and 17 424
potential links in the other study years. There are

3134 counties in each year of the study, so there are
9 821 956 potential links (including the self-loops) at
the county spatial scale (see tables 7 and 8 in the SI for
FAF and county level network statistics through time,
and a list of eight counties excluded due to missing
data).

The FAF network is densest in 2007, because the
increase in the number of nodes offsets the gains
in the number of links with time. The total mass
increased from 2007 to 2017 (see figure 7), with the
exception of 2012, which was a drought year in the
Corn Belt and Central Valley (Dall’Erba et al 2021).
These observations taken together indicate that FAF
networks have become more spatially concentrated
over time, with fewer links carrying larger quant-
ities of food. The mass flux trend is preserved in
the county flow networks due to our methodolo-
gical constraint of mass balance between county and
FAF flows. County networks are sparser than FAF
networks. However, county network density mostly
increases with time, with some variation. The density
of SCTG 01, 03, 04, 06, and 07 increases from 2007 to
2017, while the density of SCTG 02, 05, and all com-
modities summed up decreases over the same period.
The density is the most variable in the drought year
2012. We explore this drought year in more detail in
section 4.2.

3.2. Which counties and links participate in food
flows over time?
Figure 3 illustrates our estimates for 2017 county-
level food flow networks broken down by each SCTG
commodity code. Table 4 lists the locations with the
largest net mass flow (= total inflows—total out-
flows) (see the SI for the break down by SCTG).
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Figure 3. Estimated county-scale food flow maps in 2017 for (A) live animals and fish (SCTG 01), (B) cereal grains (SCTG 02),
(C) agricultural products (except for animal feed, cereal grains, and forage products) (SCTG 03), (D) animal feed, eggs, honey,
and other products of animal origin (SCTG 04), (E) meat, poultry, fish, seafood, and their preparations (SCTG 05), (F) milled
grain products and preparations, and bakery products (SCTG 06), (G) other prepared foodstuffs, fats and oils (SCTG 07), and
(H) all agri-food commodities summed together. Top 2000 links are plotted, and link weights are scaled by the maximum mass
flux per SCTG commodity in each map.

Table 4. Top 10 net flow FAF zones and counties for all agri-food commodities by year. Net flow is the difference between inflows and
outflows. Higher inflow leads to higher net flow per FAF zone/county.

2007

FAF Mass (kg) County Mass (kg)

New Orleans, LA CFS Area 5.94× 1010 Orleans County, LA 3.56× 1010

Minneapolis-St. Paul MN-WI CFS Area (MN Part) 1.80× 1010 Black Hawk County, IA 1.03× 1010

Remainder of Texas 1.78× 1010 Harris County, TX 9.48× 109

Seattle, WA CFS Area 1.51× 1010 Sedgwick County, KS 9.02× 109

Houston, TX CFS Area 1.50× 1010 Olmsted County, MN 8.30× 109

Remainder of Pennsylvania 1.47× 1010 Jefferson County, LA 8.21× 109

Denver, CO CFS Area 1.15× 1010 Kern County, CA 7.95× 109

Remainder of Alabama 9.56× 109 Randolph County, IL 6.63× 109

Chicago IL-IN-WI CFS Area (IL Part) 9.09× 109 Maricopa County, AZ 6.55× 109

Indianapolis, IN CFS Area 8.66× 109 King County, WA 5.17× 109

2012

FAF Mass (kg) County Mass (kg)

New Orleans-Metairie-Hammond, LA CFS Area 3.07× 1010 Winnebago County, IL 1.17× 1010

Remainder of Texas 1.43× 1010 Nobles County, MN 1.08× 1010

Remainder of Mississippi 1.24× 1010 Platte County, NE 1.04× 1010

Omaha-Council Bluffs-Fremont, NE CFS Area 1.23× 1010 Webster County, IA 1.01× 1010

Corpus Christi-Kingsville-Alice, TX CFS Area 1.22× 1010 Kandiyohi County, MN 9.42× 109

Portland-Vancouver-Salem, WA CFS Area 1.09× 1010 Buena Vista County, IA 8.62× 109

Chicago-Naperville, IL CFS Area 1.06× 1010 Dodge County, NE 8.27× 109

Los Angeles-Long Beach, CA CFS Area 1.01× 1010 Washington County, LA 7.92× 109

Houston-The Woodlands, TX CFS Area 9.64× 109 Waukesha County, WI 7.76× 109

Remainder of Georgia 8.72× 109 Dawson County, NE 6.66× 109

2017

FAF Mass (kg) County Mass (kg)

New Orleans-Metairie-Hammond, LA CFS Area 7.94× 1010 Polk County, IA 8.84× 1010

Baton Rouge, LA CFS Area 2.09× 1010 Orleans County, LA 5.50× 1010

Portland-Vancouver-Salem, WA CFS Area 1.85× 1010 Riley County, KS 2.11× 1010

Chicago-Naperville, IL CFS Area 1.74× 1010 Clark County, WA 1.66× 1010

Atlanta-Athens-Clarke County-Sandy Springs, GA CFS Area 1.70× 1010 Platte County, NE 1.57× 1010

Remainder of Florida 1.54× 1010 Sedgwick County, KS 1.41× 1010

Remainder of Texas 1.35× 1010 Buffalo County, NE 1.34× 1010

Seattle-Tacoma, WA CFS Area 1.15× 1010 McLean County, IL 1.26× 1010

Los Angeles-Long Beach, CA CFS Area 1.14× 1010 East Baton Rouge County, LA 1.12× 1010

St. louise-St. Charles-Farmington, IL CFS Area 1.01× 1010 Dawson County, NE 1.11× 1010
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Some FAF zones are common over time, includ-
ing: New Orleans, LA CFS Area; Seattle, WA CFS
Area; and Chicago, IL CFS Area. These FAF zones
are consistently important producers and transport
hubs for agri-food. The majority of the largest net
flow counties are within large net flow FAF zones.
Some of the common top counties through time
are: Orleans County, LA; Sedgwick County, KS; and
Platte County, NE. Orleans County, LA contains the
New Orleans port which is a major port for the
trade of agri-food commodities via the Mississippi
River (NOL 2020). Sedgwick, KS has a large agricul-
tural economy that is built on food processing (KDA
2020). Platte County, NE is in the list of top 5 Neb-
raska counties for agricultural sales (NDA 2020).

Table 5 provides the top 10 links in county
and FAF flow networks for all SCTG commodities
summed up (see the SI for a break down by SCTG
commodity). Many of the top 10 links are self-loops,
which is in line with previous results presented
in Lin et al (2019). Many of the largest county-level
links are located in the FAF zones with the largest
food flows. However, some county-level links exceed
their respective FAF level ranking. For example, Los
Angeles County, California to Los Angeles County,
California is consistently in the top 10, although Los
Angeles-Long Beach CFS Area is not always in the top
FAF links. This is sensible because counties in Cali-
fornia are bigger in area than counties in the Mid-
west and Eastern parts of the US, which mechanic-
ally means that allocating to them will lead to a larger
mass.

Figure 4 presents a heatmap of FAF and county-
scale net flows over time. Changes in county-scale
net flows between study years are also illustrated. FAF
zones and counties that import more have higher net
flows whereas the ones that export more have lower
net flows. Southern and Eastern FAF zones bring in
more food (high net flows) and this spatial pattern is
constant through time. In contrast, more rural FAF
zones in the Midwest and Northwest send out more
food (low net flows). Similar trends are observable
in the county-scale maps.Wealthy population centers
such as Los Angeles, CA, Chicago, IL, and New York
City, NY have higher net flows through time. (Refer
to the SI for heatmaps of net flow by SCTG, as well as
separate heatmaps for inflows and outflows through
time.)

Figure 5 maps the change in county food flows
over time. By design, the county-scale networks cap-
ture the spatial patterns of the FAF data (e.g. compare
figure 5(A) with (E); figure 5(B) with (F)). Link-level
changes in mass flux between counties align well with
the FAF-level data (e.g. compare figure 5(C) with (G);
figure 4(D) with (H)). For example, the Mississippi
River-band experiences some of the largest fluctu-
ations in food flows across spatial scales. There is
also a relatively high increase in food flows within
the counties of Florida and inter-county flows of

Washington. These maps align with the heatmaps
of county inflow and outflow changes. Food flow
networkmaps broken-downby SCTGcommodity are
provided in the SI.

3.3. What are the core counties over the study
period?
Table 6 lists the FAF zones and counties that are core
to the national network through time. Core locations
tend to remain so through time, which indicates per-
sistence in their importance. The consistently core
FAF zones are: Los Angeles, CA CFS Area, Chicago-
Naperville CFS Area (IL Part), and Remainder of
Texas. The consistently core counties are: Los Angeles
County, CA, Cook County, IL, Maricopa County,
AZ, Shelby County, TN, Riverside County, CA, Bexar
County, TX and Harris County, TX. Core FAF zones
and counties—which are defined in terms of their
topological importance—are also major movers of
food mass (see table 16 in SI). This means that these
FAF zones and counties are important in terms of
both their contribution to network structure and
mass flux. Refer to the SI for the core FAF zones and
counties by SCTG commodity.

Figure 6 illustrates that a power-law relationship
exists between node degree and betweenness central-
ity. The power-law relationship is stronger in dense
networks and weaker in sparse networks, such as
SCTG 01 and 02. This means that the identification
of core counties is less clear for SCTG 01 and SCTG
02. Refer to the SI for the power-law fit by SCTG com-
modity. Importantly, the power-law relationship—
which has been observed in empirical food flow
data (Lin et al 2014, Konar et al 2018)—was not pre-
determined by our modeling approach. This means
that a power-law relationship between node degree
and betweenness centrality naturally arises through
our algorithm. The self-arising power-law indicates
that our model captures the critical attributes of food
flow networks and gives us more confidence in our
approach.

4. Discussion

Here, we discuss the advantages and limitations of our
model, estimates during the 2012 Corn Belt drought,
and future research directions.

4.1. Advantages and limitations of the food flow
model
The Food Flow Model is a data-driven approach
to estimate food flows at a fine spatial resolu-
tion through time. The data-driven nature of our
approach is both a limitation and an advantage. It is a
limitation because we do not explicitly include mech-
anisms that would enable us to addresswhy questions
about food flows. Rather, we describe the who, what,
and where of food flows with time. Yet, the empir-
ical patterns that the Food Flow Model incorporates
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Table 5. Top 10 links in FAF and county networks for all SCTG commodities summed up for 2007, 2012, and 2017. Top 10 links are
listed in the descending order of total mass (kg).

2007

FAF link Mass (kg) County link Mass (kg)

Iowa→ Iowa 1.64× 1011 Los Angeles County, CA→ Los Angeles County, CA 1.89× 1010

Remainder of Illinois→
Remainder of Illinois

1.03× 1011 Maricopa County, AZ→Maricopa County, AZ 1.07× 1010

Nebraska→ Nebraska 9.70× 1010 Palm Beach County, FL→ Palm Beach County, FL 9.12× 109

Remainder of Kansas→
Remainder of Kansas

8.46× 1010 O’Brien County, IA→ Black Hawk County, IA 8.46× 109

Remainder of Minnesota→
Remainder of Minnesota

7.64× 1010 Canyon County, ID→ Canyon County, ID 7.60× 109

Remainder of Texas→ Remainder
of Texas

7.00× 1010 Stainlaus County, CA→ Stainlaus County, CA 7.60× 109

Remainder of Wisconsin→
Remainder of Wisconsin

6.04× 1010 Cook County, IL→ Cook County, IL 6.91× 109

Remainder of California→
Remainder of California

5.42× 1010 Pope County, MN→ Pope County, MN 6.86× 109

North Dakota→ North Dakota 4.77× 1010 Sangamon County, IL→ Randolph County, IL 6.82× 109

South Dakota→ South Dakota 4.62× 1010 Kings County, CA→ Kern County, CA 6.52× 109

2012

FAF link Mass (kg) County link Mass (kg)

Remainder of Iowa→ Remainder
of Iowa

1.32× 1011 Burke County, ND→Burke County, ND 1.76× 1010

Remainder of Nebraska→
Remainder of Nebraska

8.43× 1010 Red Lake County, MN→ Red Lake County, MN 1.75× 1010

Remainder of Minnesota→
Remainder of Minnesota

7.71× 1010 Mills County, IA→Mills County, IA 1.73× 1010

Remainder of Illinois→
Remainder of Illinois

7.10× 1010 Elmore County, ID→ Elmore County, ID 1.30× 1010

Remainder of North Dakota→
Remainder of North Dakota

4.72× 1010 Gallatin County, IL→Gallatin County, IL 1.25× 1010

Remainder of Kansas→
Remainder of Kansas

4.31× 1010 Los Angeles County, CA→Los Angeles County, CA 1.21× 1010

Remainder of South Dakota→
Remainder of South Dakota

4.13× 1010 Pierce County, NE→Pierce County, NE 5.98× 109

Remainder of Texas→ Remainder
of Texas

3.80× 1010 Lewis County, MO→Lewis County, MO 5.16× 109

Remainder of Idaho→ Remainder
of Idaho

3.13× 1010 Red River County, LA→Red River County, LA 5.11× 109

Los Angeles-Long Beach CFS Area
→ Los Angeles-Long Beach CFS
Area

3.09× 1010 Fresno County, CA→Fresno County, CA 4.39× 109

2017

FAF Link Mass (kg) County Link Mass (kg)

Remainder of Iowa→ Remainder
of Iowa

2.15× 1011 Linn County, IA→ Linn County, IA 2.37× 1010

Remainder of Nebraska→
Remainder of Nebraska

1.35× 1011 Gallatin County, IL→ Gallatin County, IL 2.36× 1010

Remainder of Illinois→
Remainder of Illinois

1.06× 1011 Blaine County, ID→ Blaine County, ID 1.42× 1010

Remainder of Minnesota→
Remainder of Minnesota

1.04× 1011 Davison County, SD→ Davison County, SD 1.18× 1010

Remainder of Texas→ Remainder
of Texas

7.84× 1010 Armador County, CA→ Armador County, CA 1.05× 1010

Remainder of Kansas→
Remainder of Kansas

7.23× 1010 Los Angeles County, CA→ Los Angeles County, CA 8.55× 109

Remainder of South Dakota→
Remainder of South Dakota

6.11× 1010 Lafayette County, FL→Lafayette County, FL 6.31× 109

Remainder of North Dakota→
Remainder of North Dakota

5.82× 1010 New York County, NY→ New York County, NY 6.00× 109

Remainder of Wisconsin→
Remainder of Wisconsin

5.28× 1010 Riverside County, CA→ Riverside County, CA 5.91× 109

Remainder of California→
Remainder of California

4.96× 1010 San Bernardino County, CA→ San Bernardino
County, CA

4.69× 109
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Figure 4. Net food flows (kg) for FAF Zones and counties over time for all SCTGs summed up. (A) 2007 net flows in FAF, (B)
2012 net flows in FAF, (C) 2017 net flows in FAF, (D) 2007 net flows in county, (E) 2012 net flows in county, (F) 2017 net flows in
county. Net flows are defined as the difference between inflows and outflows. Positive net flows are blue colored, negative net
flows are red colored. (G) Change in net flows from 2007 to 2012, (H) change in net flows from 2012 to 2017, (I) change in net
flows from 2007 to 2017. Increases in net flow are ‘green’ colored (e.g. more inflows) and decreases in net flow are ‘purple’ colored
(e.g. more outflows).

have mechanistic explanations in certain cases, such
as the gravity model of trade (Anderson 1979), which
is incorporated in our methodology (see section 2).
The data-driven nature of our model also means that
input data availability represents a limitation to its
scope. This is the reason that our study time series
is restricted to the years 2007, 2012, and 2017, for
example.

Themain shortcoming of our study is the absence
of ground truth data to validate the county food flow
estimates. Yet, our data-driven approach employs
a variety of measures to ensure that our county-
level estimates are bounded by reality (e.g. mass
balance requirement). Additionally, we introduced
model improvements to limit human error and
enhance realism. Grid-based search was used to auto-
mate variable selection and TOPSIS was used for
core node selection (see table 3). This reduces the
potential for human bias and error with a scientific
method for these model components. The additional
improvements that we made in the handling of out-
liers (i.e. winsorizing distances and setting self-loop
distances constant) further enhances the realism of
model outputs. Flows of relatively large counties (in
terms of income, population, production, and other
distance-unrelated characteristics) are now estim-
ated to be higher than relatively small counties. This
represents an improvement to the original Food Flow
Model, in which the flow values of some counties

was likely overestimated due to their very small
size and the previous way that self-loop distance
was handled. Additionally, the self-arising power-law
relationship between degree and betweenness central-
ity (see section 3.3) provides additional confidence in
model performance.

Themain advantage of ourmodel is the provision
of county-level estimates of food flows.We provide an
example of the output of ourmodel in figure 7 for Los
Angeles County, CA and Hillsborough County, FL,
which are both in the list of core nodes (see table 6).
Figure 7 illustrates that we are able to map the food
mass inflows and outflows for each county in the US
per commodity per study year. Similar maps could
be generated for each of the 3134 counties by SCTG-
year. Researchers and policy makers could evaluate
a specific location of interest over time. However,
our estimates are best suited for national-level ana-
lyses and local-level decision-makers may want to
augment our estimates with additional site-specific
information.

The total mass in/outflow of counties are
constrained to sum to the mass in/outflow of
their corresponding FAF zone. However, the mass
in/outflow is heterogeneously allocated to links
between counties according to our regression mod-
els. Regression models are fit to each SCTG-year and
provided in the ‘Regression Models and Network
Statistics.xlsx’ spreadsheet in the SI. For example,
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Figure 5. Food flows of all SCTG commodities summed up for 2007, 2017 and change in mass between 2007 and 2017. In
FAF-level networks top 1000, in county-level networks top 2000 links are drawn. (A) 2007 FAF flows, (B) 2017 FAF flows, (C) FAF
flows mass decrease, (D) FAF flows mass increase, (E) 2007 county flows, (F) 2017 county flows, (G) county flows mass decrease,
and (H) county flows mass increase.

the regression equation for SCTG 02 for grains is:
ln(E(F2))= −0.74 log (D) − 0.18 log (GDPo) + 0.41
log (Po)+ 0.13 log (A1d)+ 0.45 log (D3d)− 0.15 log
(S1d) + 0.14 log (C1d) − 0.06 log (T3d) + 0.24 log
(LIVEd). This means that grain flows will be alloc-
ated to inter-county links according to county-level
regressor values for the distance between counties
(D), personal income of the origin county (GDPo),
grain production of the origin county (Po), revenue
for accommodation in the destination county (A1d),
revenue for drinking places (alcoholic beverages)

in the destination county (D3d), revenue for sci-
entific research and development services industries
in the destination county (S1d), cattle population
in the destination county (C1d), turkey population
in the destination county (T3d), and total livestock
population in the destination county (LIVEd). The
heterogeneity in the spatial and temporal distribu-
tion of regressor variables explains the differences
in food flows between counties and FAF zones with
time. Maps of all regressor variables are provided in
the SI.
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Table 6. The core FAF zones and counties in the US food flow network. These FAF zones and counties are structurally important to the
national total agri-food flows in each study year.

2007

Rank FAF Name CFS Code Rank County Name FIPS

1 Chicago IL-IN-WI CFS Area (IL Part) 17-176 1 Cook County, IL 17 031
2 Los Angeles, CA CFS Area 06-348 2 Maricopa County, AZ 4013

3 Los Angeles County, CA 6037
4 Shelby County, TN 47 157
5 Harris County, TX 48 201
6 Orleans County, LA 22 071
7 Johnson County, KS 20 091
8 Bexar County, TX 48 029
9 Clark County, NV 32 003
10 Dallas County, TX 48 113
11 Hennepin County, MN 27 053
12 Jackson County, MO 29 095
13 Riverside County, LA 6065

2012

Rank FAF Name CFS Code Rank County Name FIPS

1 Los Angeles-Long Beach, CA CFS Area 06-348 1 Los Angeles County, CA 6037
2 Remainder of Texas 48-99999 2 Shelby County, TN 47 157
3 Houston-Woodlands, TX CFS Area 48-288 3 San Bernardino County, CA 6071
4 Chicago-Naperville CFS Area (IL Part) 17-176 4 Dallas County, TX 48 113
5 San Jose-San Francisco-Oakland, CA CFS Area 06-488 5 Harris County, TX 48 201
6 New York-Newark CFS Area (NY Part) 36-408 6 Maricopa County, AZ 4013

7 Cook County, IL 17 031
8 Riverside County, CA 6065
9 Bexar County, TX 48 029

2017

Rank FAF Name CFS Code Rank County Name FIPS

1 Remainder of Texas 48-99999 1 Riverside County, CA 6065
2 Los Angeles-Long Beach, CA CFS Area 06-348 2 Maricopa County, AZ 4013

3 San Bernardino County, CA 6071
4 Los Angeles County, CA 6037
5 San Diego County, CA 6073
6 Shelby County, TN 47 157
7 Cook County, IL 17 031
8 Hillsborough County, FL 12 057
9 Harris County, TX 48 201
10 Bexar County, TX 48 029
11 Dallas County, TX 48 113

4.2. Impact of the 2012 Corn-Belt drought on grain
flows
In 2012 a severe drought hit the US Corn-Belt, which
is a highly productive region for grain (Boyer et al
2013). The 2012 drought led to a 55% variation in
corn yield across the region (Wan et al 2015). Illinois,
Iowa, Indiana, Minnesota, and Nebraska were the
main states impacted by the drought (Wu et al 2015,
Prokopy et al 2017). Here, we examine our estimates
of grain (SCTG 02) flow changes during the drought
for the Corn-Belt.

The drought effect is captured in our model since
the total mass flux of grain in 2012 is the lowest
among all study years (see figure 2). The Corn-Belt
remains a top region for grain outflow in 2012, despite
the drought (see table 18 in SI). However, the mass
of grain outflows are lower in 2012 due to decreased
grain production during the drought. Grain out-
flows from the Corn-Belt decreased by 3.29× 1011 kg
(53.18%) from 2007 to 2012, while inflows also

decreased (2.84× 1011 kg; 53.67%). Across FAF
zones, the mass of grain outflow is 15.28%–68.05%
lower in 2012 than in 2007. As in figure 40 in the
SI, grain inflows also decrease from 2007 to 2012.
Corn-Belt grain outflows and inflows rebound fol-
lowing the drought in 2017: outflows increase by
11.67%–129.65% and inflows increase by 30.72%–
114.22% across FAF zones from2012 to 2017, primar-
ily due to an increase in self-loops (see table 25 in
SI). This indicates the importance of grain produc-
tion and processing within the regional agricultural
economy.

Link-level changes in grain flows are mapped in
figure 8. The largest mass decreases in grain links
are concentrated in the Corn-Belt FAF zones (see
figure 8(A), which indicates more internal movement
in a non-drought year. From 2007 to 2012, mass
increases in cereal grain flows to/from the Corn-Belt
are connected with the rest of the nation, such as Cali-
fornia, Texas, andMississippi FAF zones (figure 8(B)).
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Figure 6. The relationship between node degree (k) and betweenness centrality (B) follows a power-law through time. These plots
are for all SCTGs summed up for (A) 2007, (B) 2012, and (C) 2017. The blue set indicates the core nodes of the network.

Figure 7. Example of the estimates provided by the food flow model. (A) Food inflows are shown for Los Angeles County, CA in
2017. (B) Food outflows are shown for Hillsborough County, FL in 2017.

Similar to FAF-level networks, decreases in mass flux
from 2007 to 2012 are mainly concentrated in the
Corn-Belt, while the increases are heterogeneously
distributed around the nation in the county-level net-
works (see figures 8(C) and (D)). These findings illus-
trate that the 2012 drought is captured in our flow
estimates.

4.3. Future research
There are many potential future research applica-
tions of this study. The spatially detailed maps of
food flows that we have generated in this study
(and make freely available with the paper) could be
paired with footprint estimates to quantify embod-
ied resource (e.g. water, carbon, etc) in future work.
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Figure 8. Grain flows (kg) during the 2012 drought. The top 2000 links by mass are shown in county-level. The top 1000 links by
mass are shown in FAF-level. (A) Mass reductions from 2007 to 2012 in FAF-level. (B) Mass increases from 2007 to 2012 in
FAF-level. (C) Mass reductions from 2007 to 2012 in county-level. (D) Mass increases from 2007 to 2012 in county-level.

Our work could also be used to develop under-
standing of county-level food security, dietary pref-
erences, and agricultural sustainability. Additionally,
more realistic transportation distancemeasures could
be considered to develop mode-specific estimates of
food flows. For example, the Food Flow Model could
incorporate mode-specific travel times (Weiss et al
2018, Nelson et al 2019). This would move us closer
to assessing the critical infrastructure that undergirds
the production, processing, transport, and storage of
agricultural and food flows within the US. Another
important avenue of future research is to determine
the vulnerabilities and resiliencies that exist in the
national food supply network. These findings may be
useful for researchers and decision makers interested
in food systems security within the United States.

The Food Flow Model is a framework that could
be applied to other locations. However, since it is a
data-driven model, the necessary input data would
need to be available in other locations. A major con-
straint that we foresee as being a likely impediment
to implementing the Food Flow Model in other loc-
ations is the lack of sub-national commodity flow
information. The US government collects informa-
tion every 5-years in the US Census and uses that
information to build the CFS (and subsequent FAF
database), which is a key data requirement of the
Food Flow Model described here. So, other countries
or world regions with comparable coarse-scale com-
modity flow information to downscale from, could

implement the Food Flow Model to estimate fine-
grained food flows.

5. Conclusion

We estimated food flows between US counties
through time with an improved version of the Food
Flow Model. We provide 206.3 million data points
with this paper (9 821 956 links including zeros for
each of the 7 SCTG agri-food commodities and 3
study years). Our estimates present good general
agreements with FAF data (by design), and cap-
ture a self-arising power-law relationship among
node degree and betweenness centrality. The 2012
Corn-Belt drought is also evident in our estimates
and our core counties are mainly consistent through
time. The core counties represent some of the major
transit hubs, such as Houston, TX, Chicago, IL, and
Los Angeles, CA. Thus, our time-series estimates of
food flows between US counties contribute to a more
comprehensive picture of our national food system
for researchers and policymakers.

Data availability statement

The data that support the findings of this studywill be
openly available at the following URL/DOI: https://
doi.org/10.13012/B2IDB-9585947_V1. Data will be
available from 7 February 2022.
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