
Environ. Res. Lett. 18 (2023) 084031 https://doi.org/10.1088/1748-9326/ace72c

OPEN ACCESS

RECEIVED

7 March 2023

REVISED

13 June 2023

ACCEPTED FOR PUBLICATION

13 July 2023

PUBLISHED

3 August 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Spatially detailed agricultural and food trade between China
and the United States
Akshay Pandit, Deniz Berfin Karakoc and Megan Konar∗
University of Illinois, Urbana-Champaign, IL, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: mkonar@illinois.edu

Keywords: trade, networks, food, agriculture, high-resolution, United States, China

Supplementary material for this article is available online

Abstract
The United States and China are key nations in global agricultural and food trade. They share a
complex bilateral agri-food trade network in which disruptions could have a global ripple effect.
Yet, we do not understand the spatially resolved connections in the bilateral US–China agri-food
trade. In this study, we estimate the bilateral agri-food trade between Chinese provinces and U.S.
states and counties. First, we estimate bilateral imports and exports of agri-food commodities for
provinces and states. Second, we model link-level connections between provinces and
states/counties. To do this, we develop a novel algorithm that integrates a variety of national and
international databases for the year 2017, including trade data from the US Census Bureau, the US
Freight Analysis Framework database, and Multi-Regional Input-Output tables for China. We then
adapt the food flow model for inter-county agri-food movements within the US to estimate
bilateral trade through port counties. We estimate 2,954 and 162,922 link-level connections at the
state-province and county-province resolution, respectively, and identify core nodes in the bilateral
agri-food trade network. Our results provide a spatially detailed mapping of the US–China
bilateral agri-food trade, which may enable future research and inform decision-makers.

1. Introduction

The United States and China are key nations in global
agricultural and food trade [1, 2]. Bilateral agri-
food trade between the US and China impacts their
domestic economies, natural resources, and environ-
ment [3–5], with spillovers to other countries [6, 7].
Yet, we do not understand the spatially resolved agri-
food trade between these two countries. Estimates of
high-resolution agri-food trade between the US and
China would enable assessments of spatiotemporal
risks, critical infrastructure, and environmental foot-
prints. For this reason, the goal of this study is to
estimate the trade of agricultural and food commod-
ities at a high spatial resolution between the US and
China, with the identification of core locations.

Both the United States and China are import-
ant nations in the global food system. Both countries
are major producers, consumers, and trade powers in

agri-food commodities [8]. The US is a major produ-
cer of soybean and corn [9], and is the world’s largest
exporter and second-largest importer of crop and
livestock products [10]. The US is also a key nation
for global processed food trade. In fact, the US is the
top exporter of processed food commodities with an
average of 16.19% of market share between 1980 and
2012 [11]. It is also the top importing nation for pro-
cessed foods with 13% of market share in 2018 [12].
In the last two decades, China has undergone tre-
mendous economic growth, resulting in improved
living standards [13] and increased demand for food
[14]. This increased food demand is largely met by
importing from global markets, making China the
largest importer of agricultural products [10, 15].

US exports to East Asia have increased over the
last few decades (150% from 1996 to 2021 [16]),
with exports to China dramatically rising since China
joined the World Trade Organization in 2001 [17].
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In 2017, China accounted for 14.2% of US agricul-
tural exports ($138.4 Billion) and 57% of US soybean
exports ($21 Billion). In 2018, China implemented
retaliatory tariffs on US agriculture, which dramatic-
ally reduced Chinese imports of US agricultural com-
modities,most notably in soybeans. The trade dispute
between the US and China had significant environ-
mental repercussions [18, 19], including unintended
increases in nitrogen and phosphorus pollution and
irrigation water use in the US as farmers shifted from
soybeans to other crops [20]. However, agricultural
and soy exports rebounded following the trade dis-
pute between the two countries [21].

Mapping the high-resolution agri-food trade net-
work between the US and China would inform sup-
ply chain security, infrastructure investment, and
environmental footprint assessments. Interruptions
within this bilateral trade network could be con-
sequential to both countries, such that spatially
resolved risk mapping may help to alleviate potential
disruptions [22]. Climate change will alter domestic
agricultural supply chains in both countries [23, 24],
making it essential to understand current infrastruc-
ture investment requirements. There is a rich literat-
ure on the environmental footprints of trade within
and between the US and China [25–27], which could
be refined in future work with spatially resolved trade
information between the two countries.

Recent research has highlighted the importance
of identifying connections between sub-national pro-
duction and international trade [28]. For example,
sub-national production in Brazil has been linked
with the country of final consumption for beef [29]
and soy [28, 30]. Sub-national production data linked
to trade can improve our quantification of supply
chain sustainability, such as for embodied water
[31–33]. Our study aims to contribute to this literat-
ure by developing, what is to our knowledge, the first
large-scale estimation of high-resolution agricultural
trade between subnational regions of both the receiv-
ing and sending countries. The scope of our paper is
to develop a modeling framework to estimate bilat-
eral trade links between sub-national locations in two
major trading partners, and identify the major trade
links, locations, and core nodes.

International trade data between the US and
China is available from the COMTRADE data-
base [34]. Data on sub-national food flows are avail-
able within both the US and China. The Freight
Analysis Framework (FAF) database within the US
provides information on the movement of commod-
ities between the 132 FAF zones of the US, which
are primarily Metropolitan Statistical Areas and
States [35]. The FAF database also provides inform-
ation on the import and export of FAF zones with
8 world regions. The FAF database has been used in
prior work to develop the food flow model (FFM) to
estimate high-resolution food flows between counties

in the US [36, 37]. The US Census provides bilat-
eral import and export data between states in the US
and other countries [38]. The multi-regional input-
output (MRIO) database in China provides inform-
ation on commodity transfers between provinces,
including imports and exports between provinces and
the Rest of the World [39, 40]. A major hurdle to
integrating these disparate databases is the fact that
they utilize different coding conventions.

The goal of this study is to spatially resolve the
trade of agricultural and food commodities between
the United States and China. Doing this requires the
development of a novel methodology to overcome
data challenges and inconsistencies across a variety
of government databases and coding systems. The
research questions that guide this study are: (1) How
much agri-food trade occurs between China and the
United States? (2)What are the major agri-food trade
links between Chinese provinces and U.S. states? (3)
What are the major agri-food trade links between
Chinese provinces and U.S. counties? (4) What are
the core nodes in the US–China agri-food trade net-
work? Our methods are detailed in section 2. We
present findings that address our research questions
in section 3.We discuss our approach in section 4 and
conclude in section 5.

2. Methods

We develop a data-fusion approach to estimate agri-
food trade between China and the United States
as shown in figure 1. We integrate a variety of
government databases (detailed in section 2.1).
First, we determine the total amount of agri-
food bilateral trade between the two countries
(section 2.2). Second, we estimate link-level agri-
food trade between Chinese provinces and U.S. states
(section 2.3). Third, we further resolve links to estim-
ate bilateral trade between Chinese provinces and
U.S. counties (section 2.4). Finally, we use our estim-
ates to determine the core locations in the US–China
agri-food trade network (section 2.5).

All 50 states (and the District of Columbia) and
3135 counties are included in the analysis for the
United States. There are 8 counties that are not
included in the study due to data limitations; see [37]
for a discussion. Our study includes 31 provinces
for China. The supporting information (SI) provides
a detailed list of the counties, states, and provinces
included in this study.

2.1. Data
A variety of government databases are used as input
to this study. Table 1 lists all of the data and models
used in this study for the year 2017 as this is the most
recent year with all of the required data inputs. We
utilize US Census Bureau data [38], which provides
bilateral state and port-level import and export data
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Figure 1. Schematic of the data-intensive methodology developed to estimate high-resolution agricultural and food trade between
China and the United States. A variety of government databases are combined to model connections between counties in the
United States and provinces in China. The multi-regional input-output (MRIO) database is used to assess trade to/from Chinese
provinces. The Food Flow Model (FFM) is used to determine flows to/from port counties within the United States.

Table 1. List of all data sources used in this study.

Name References Description

State imports & exports in
the United States

US Census Bureau [38] Export and import trade amount
in mass (kilograms) and value
(US Dollars) for all US States. It
provides trade data for HS and
NAICS commodities.

FAF zone imports, exports,
and domestic flows in the
United States

Freight Analysis
Framework (FAF) Version
5 [35]

Data detailing freight movement
between 132 FAF Zones (e.g.
major metropolitan areas and
the Remainder of states), as well
as international import/export
with 8 world regions. Data
provided for SCTG commodity
coding system.

Province imports, exports,
and domestic flows in China

Multi-Regional Input
Output (MRIO)
database [39]

Domestic inter-province
commodity connections in
Chinese Yuan (RMB).
International trade for all
provinces with the Rest of the
World. Data is classified into 42
sectors.

for the US with China. We use FAF data which indic-
ates imports/exports of FAF zones in the US with East
Asia.

We adapt the improved FFM [37] to estim-
ate county-to-port links. The original FFM [36]
estimated all inter-county connections within the
US. Here, we only require the transport of agricul-
tural and food commodities within the US that is
exchanged with China. For this reason, we restrict the
FFM to downscale international trade with Asia to
international port counties. This is done by selecting

the international FAF spreadsheet and restricting the
model to FAF imports/exports with Asia. We then
partition the fraction of these flows that are traded
with China.

A variety of commodity coding systems and resol-
utions is used across the data. The US Census uses the
Harmonized Systems (HS) coding system, whereas
the FAF database uses Standard Classification of
Transported Goods (SCTG) codes. To enable inter-
operability between these datasets, we developed an
SCTG-HS commodity crosswalk for SCTG categories
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Table 2. List of Standard Classification of Transported Goods (SCTG) agricultural and food commodity groups included in this study.

SCTG Code Food Commodity

01 Live animal and fish
02 Cereal grains
03 Agricultural products (except for animal

feed, cereal grains, and forage products)
04 Animal feed, eggs, honey, and other

products of animal origin
05 Meat, poultry, fish, seafood, and their

preparations
06 Milled grain products and preparations,

and bakery products
07 Other prepared foodstuffs, fats, and oils

01 to 07, which are the agricultural and food com-
modities. Our SCTG-HS crosswalk is a table that
assigns eachHS commodity to a corresponding SCTG
category. The Multi-Regional Input-Output (MRIO)
database [39] classifies trade into 42 sectors (for a
complete list of MRIO sectors, see the SI). In this
analysis, we extract Sector P1 (Agriculture, forestry,
animal husbandry, and fishery products and ser-
vices) and Sector P6 (Food and tobacco). Since the
MRIO dataset has a different and coarser commodity
classification, we create another crosswalk table to
assignMRIO commodity categories to SCTG categor-
ies. In this way, our final study is organized around the
SCTG commodity coding system, which is provided
in table 2. In this analysis, we fill all missing values
with 0.

2.2. Import/export by state and province
In this section, we estimate the bilateral state and
province trade for agri-food commodities corres-
ponding to SCTG 01–07 through a deterministic
method which manipulates existing data sources.
First, we obtain the US Census trade data at the state
level that is provided in the HS coding for commod-
ities. The US Census provides trade information for
Total Export Value and Total Import Value in dol-
lar value, but not in mass. However, the US Census
dataset also provides the variables Vessel Total Exports
SWT,Vessel Total Imports SWT,Air Total Exports SWT
and Air Total Imports SWT, where SWT stands for
shipping weight in kilograms. We utilize Vessel Total
Exports SWT and Air Total Exports SWT to calculate
Total Export and Total Import in mass (kg) as:

TEsc = VTEsc +ATEsc (1)

TIsc = VTIsc +ATIsc (2)

where TE stands for Total Export (kg), TI for Total
Import (kg), VTE for Vessel Total Exports SWT, VTI
forVessel Total Imports SWT,ATI forAir Total Imports
SWT and ATE for Air Total Exports SWT. Subscript s

represents a state and c stands for a commodity in the
HS commodity coding system.

After obtaining Total Export and Import in mass,
we use the commodity crosswalk to assign HS com-
modities to SCTG codes (see the SI for the SCTG-
HS crosswalk). We then sum the exports of agri-food
commodities within an SCTG group:

TEs,sctg =
∑
c

TEsc (3)

TIs,sctg =
∑
c

TIsc (4)

where sctg stands for an SCTG commodity group, s
stands for a givenUS state and c for a specificHS com-
modity. TE and TI stand for Total Export (kg) and
Total Import (kg), respectively. We aggregate indi-
vidual commodities c exported from each state s to
SCTG groups. In this way, we obtain estimates of
SCTG agri-food exports from US states to China in
units of both mass and dollar value (USD).

To estimate province-level trade with the US, we
utilize the MRIO dataset. The MRIO data contains
information on province-scale imports and exports
to the Rest of the World in units of Chinese Yuan
(¥). As mentioned in section 2.1, we extract Sector
P1 (Agriculture, forestry, animal husbandry, and fish-
ery products and services) and Sector P6 (Food and
tobacco) data in this study.

We first convert MRIO trade data from its nat-
ive units of ¥ into units of mass and USD. To
convert MRIO data from ¥ to USD we multiply
all entries with the 2017 average annual conversion
ratio between the two currencies (which is 0.148
from [41]). This is explained mathematically below:

Let’s represent a single data entry in the MRIO
dataset asM, then:

Msec,p = cf ×Msec,p (5)

where cf is the 2017 average conversion factor, sec
stands for a specific Sector (P1 or P6) and p stands
for a particular province.
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The values are filtered for only Sectors P1 and P6
to obtain the export and import of each province. US
Census data is used to calculate the ratio of imports
and exports between the US and China. This ratio is
then applied to province-level import and exportwith
the Rest of the World to partition trade with the US.
Next, we map the MRIO trade data into SCTG com-
modity codes. To achieve this, we follow a four-step
process.

(a) Aggregate the State level data across all states
to obtain import or export values for each SCTG
category. (b) Use the crosswalk (see supplement-
ary information) to designate MRIO sectors to the
Census data. (c) Obtain the imports and exports for
sectors P1 and P6 and merge them with the Census
data. (d) Calculate the ratio of SCTG categories as a
fraction of the respective MRIO sectors.

This is formulated mathematically below:

CVEsctg =
∑
s

TEs,sctg (6)

CVIsctg =
∑
s

TIs,sctg (7)

CFe,sctg = CVEsctg/MCTsec (8)

CFi,sctg = CVIsctg/MCTsec (9)

where CF stands for the commodity fraction of the
SCTG category in the respective MRIO commodity
category. CVE and CVI represent the total US Census
commodity export and import value (in USD) for the
specific SCTG commodity, and MCT is the MRIO
commodity total for a particular MRIO commod-
ity category. sctg implies a specific SCTG category
(e.g. 01), s stands for a given US state (e.g Illinois),
e and i stand for export and import respectively, and
sec implies a specific MRIO sector (e.g. Food and
Tobacco).

This process allows us to extract the commodity
fraction of each SCTG commodity type in China’s
trade with the US. We take the province-level clean
MRIOdata andmerge the ratios calculated in the pre-
vious step. Finally, we multiply these ratios with cor-
responding province-level values to obtain an estim-
ate of trade value (in USD) in a province for each
SCTG category. This is shown mathematically below:

MEsctg,p = CFe,sctg ×MEsec,p (10)

MIsctg,p = CFi,sctg ×MIsec,p (11)

where ME and MI represent the MRIO export
and import value (in USD) respectively for a given
province, and CF stands for the commodity fraction

of the SCTG category in the respective MRIO com-
modity category. Also, sctg implies a specific SCTG
category (e.g. 01), p stands for a Chinese province
(e.g. Hunan), and sec implies a specific MRIO sector
(e.g. Food and Tobacco).

This gives corresponding SCTG trade values for
every sector value of a given Chinese province, based
onMRIO-SCTG crosswalk. To obtain a similar estim-
ate of trade mass (in kilograms), we use the state-
level standardized data (US Census data), to obtain
the proportion of trade mass with respect to the
trade value for every SCTG category. This is expressed
mathematically as:

MPropsctg =

∑
s(TradeMass)s,sctg∑
s(TradeValue)s,sctg

(12)

MMEsctg,p =Mpropsctg ×MEsctg,p (13)

MMIsctg,p =Mpropsctg ×MIsctg,p (14)

where MProp stands for the proportion of Trade in
mass (Trade Mass (kg)) corresponding to trade in
value (Trade Value (USD)), andMME andMMI rep-
resent the MRIO export and import value in kilo-
grams. Also, p stands for a given US state and sctg
for a specific SCTG commodity category.Wemultiply
these ratios with trade values for respective SCTG
types to obtain the trade mass.

2.3. Estimating links between provinces and states
To estimate link-level connections between US states
and Chinese provinces, we utilize the standardized
datasets (where commodities are classified in SCTG
01–07, and have trade mass and trade value in kilo-
grams and US Dollars, respectively) for both coun-
tries at the sub-national level (section 2.2). Then, we
calculate the location fraction of provinces, grouped
by each SCTG. We obtain the location fraction of a
province for a given SCTG category by dividing the
trade amount (export or import) by the total trade
(export or import) value for that commodity

LFe,sctg,p = EVsctg,p/CTe,sctg (15)

LFi,sctg,p = IVsctg,p/CTi,sctg (16)

where LF is the location fraction calculated for both
imports and exports. EV and IV represent export and
import values of a province for a given SCTG com-
modity sctg respectively, and CT is the total value for
a given trade type and commodity. Variables e and
i indicate exports from China and imports to China
respectively, sctg stands for a specific SCTG commod-
ity category, and p indicates a particular province.
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Table 3. Variable definitions and data sources.

Variable Definition Data Source

TE Total Export (kg) US Census (Trade Data)
TI Total Import (kg) US Census (Trade Data)
VTE Vessel Total Exports SWT US Census (Trade Data)
VTI Vessel Total Imports SWT US Census (Trade Data)
ATE Air Total Exports SWT US Census (Trade Data)
ATI Air Total Imports SWT US Census (Trade Data)
M Data entry in MRIO dataset Multi-Regional

Input-Output (MRIO) Data
CF Commodity fraction of the SCTG category

in the respective MRIO commodity
category

Multi-Regional
Input-Output (MRIO) Data

CVE Aggregate US Census commodity export
(USD)

US Census (Trade Data)

CVI Aggregate US Census commodity export
(USD)

US Census (Trade Data)

MCT MRIO commodity total for a particular
MRIO commodity category

Multi-Regional
Input-Output (MRIO) Data

ME MRIO export value (USD) Multi-Regional
Input-Output (MRIO) Data

MI MRIO import value (USD) Multi-Regional
Input-Output (MRIO) Data

MProp Proportion of trade mass corresponding to
trade value

US Census (Trade Data)

MME MRIO export value (kg)
MMI MRIO import value (kg)
Trade Mass Trade in Mass (kg) US Census (Trade Data)
Trade Value Trade in Value (USD) US Census (Trade Data)
LF Location fraction (Evaluated for imports

and exports separately)
Multi-Regional
Input-Output (MRIO) Data

EV Export values of a province for a given
SCTG commodity c

Multi-Regional
Input-Output (MRIO) Data

IV Import values of a province for a given
SCTG commodity c

Multi-Regional
Input-Output (MRIO) Data

CT Total value for a given trade type and
commodity

Multi-Regional
Input-Output (MRIO) Data

SEV US state export value US Census (Trade Data)
SIV US state export value US Census (Trade Data)
BE Bilateral export value between a given state

and province for a given SCTG commodity
BI Bilateral import value between a given state

and province for a given SCTG commodity

Finally, for every commodity, we use location
fraction andUS state values to obtain the correspond-
ing link-level connections with Chinese provinces.
The following equations delineate the process:

BEp,s,sctg = SEVs,sctg × LFe,sctg,p

BIp,s,sctg = SIVs,sctg × LFi,sctg,p (17)

where SEV and SIV are State Export Values and
State Import Values, respectively. BE and BI rep-
resent bilateral export and import values between a
given state and province for a given SCTG commod-
ity respectively, and LF is the location fraction calcu-
lated for both imports and exports. Also, s stands for
a given US state and sctg for a specific SCTG com-
modity category, e and i indicate exports from China
and imports to China, and p indicates a particular

province.We list all variable symbols, definitions, and
sources in table 3.

2.4. Estimating links between provinces and
counties
We use the FFM to estimate county-level agri-food
trade with China. The FFM was developed to estim-
ate county-level food flows within the US. The ori-
ginal model mapped county-level food flows between
all county pairs [36, 37]. In this study, we adapt this
model to estimate county-level food flows specifically
for import and export with China.

To do this, we use the FFM to downscale FAF
level imports and exports between Eastern Asia
and the US per SCTG commodity (see table 2 for
the list of SCTG commodities). FAF-level imports
and exports between Eastern Asia and the US data
is obtained by using only the international FAF
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Figure 2. Illustration of the link-level estimates between the United States and China. Flows of agri-food commodities to/from
counties in the United States and provinces in China are estimated via international ports in the United States. The multi-step
nature of the model is shown in this cartoon. Exports from the United States are shown with the blue dashed line; exports from
China are shown with the red dashed line. In this example soy flows from Champaign County in Illinois State to the county with
the port of Los Angeles before being exported to Guangdong Province. Note that soy is not modeled individually but is contained
within Standard Classification of Transported Goods (SCTG) category 03. Processed food is exported from Yunnan Province to
the county with the port of Los Angeles before being shipped to Middlesex County in New Jersey State.

spreadsheet. We estimate 2017 food flows between
provinces and counties under twomain assumptions:

(i) Counties with international ports are the only
ports of entry/exit for international trade, consistent
with FAF-level data [35]. (ii) Commodities are per-
fectly mixed once they arrive at international ports
and in trade to/from ports.

We adapt the FFM to capture international trade
withChina by constraining international trade to pass
through port counties. Here, we use the canonical
FFM which employs logit/probit technique for link
estimation and Gamma mixture model to estimate
food flows between counties. However, we limit the
input data of our model, such that domestic origins
are only the counties that have international ports for
import from China. For exports to China, we limit
domestic destinations to counties with international
ports this time (see SI for the complete list of counties
with international ports). However, we include all
3135 counties within the U.S. for the re-distribution
of food commodities along the U.S. both before and
after the international export and import, respect-
ively. Figure 2 illustrates the multi-step nature of our
modeled estimates.

The FAF database provides information on inter-
national trade between FAF zones and eight world

regions, including Eastern Asia (see the SI for the list

of world regions provided in FAF). This provides key

information on the total trade amount (kg) per com-

modity between Eastern Asia and FAF-zones in the

U.S. We disaggregate the total trade to/from Eastern
Asia into trade solely with China through the use of
the perfect mixing assumption. To do so, we com-
pute the percentage of trade amount (kg) China
contributed over the total trade amount of Eastern

Asia countries per commodity for the year 2017 by
UN COMTRADE [34]. This ratio is applied to our
estimated county-level food flows to disaggregate
China’s contribution to food flows between port
counties and interior counties (see SI for perfect
mixture percentages per commodity for import and
export separately). This process is repeated separately
for imports and exports.

2.5. Core nodes in US–China agri-food trade
network
We identify the core nodes in the US–China bilat-
eral agri-food trade network following the approach
in [1]. We do this per SCTG commodity for imports
and exports separately. For each SCTG commod-
ity, we create a binary network where nodes rep-
resent US counties and China provinces, and links
represent whether a trade exists or not based on
the estimated food flows. Here, we looked at the
binarized version of the network since we want to
identify the locations (both counties and provinces)
that are critical for the connectivity structure of the
US–China trade network. We include all 3135 US
counties and 31 Chinese provinces as network nodes,
where 228 of the US counties have international
ports.

There are 719 643 potential links in the bilateral
trade network whenwe consider a network consisting
of an internal county (either a source or destination
of commodity trade), a county with a port, a province
with a port, and the internal province (either a source
or destination of commodity trade). The density of
the county-level network is computed as the ratio
of the estimated number of links over the potential
number of links.
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To determine the core nodes, we adopt TOPSIS, a
multi-criteria decision analysis technique. TOPSIS is
a commonly used approach to determine the import-
ance of network components [42, 43] as it ranks the
components based on their pre-determined criteria
performances [44]. We use node betweenness cent-
rality and degree [45] as criteria to assess the core
counties. Degree centrality is the number of con-
nections each node has, and betweenness central-
ity is the ratio of shortest paths passing through a
node’s overall potential shortest paths. High degree
centrality represents a node that is well-connected
with the rest of the network [46]. Similarly, if a
node has high betweenness centrality, then it is one
of the main bridges connecting the origin and des-
tination points [47]. Nodes with both high degree
and betweenness centrality are defined to be core
nodes, which represent the most central and connec-
ted nodes in the bilateral trade network [1].

3. Results

In this section, we address our research questions.
We present findings on US–China agri-food bilat-
eral trade at both national and sub-national scales,
and highlight key commodities, trade links, and core
nodes. Our results here are based on trade in units of
mass (kg); the SI contains additional results based on
trade in units of US Dollars ($).

3.1. Howmuch agri-food trade occurs between
China and the United States?
Figure 3 shows US exports and imports with China
at the national scale for agri-food commodities. Agri-
food commodities are categorized in SCTG groups
(see table 2) in both units of mass (in million tons)
and value (in billion USD). The US generally is a net
exporter of agri-food to China. The US is a major
exporter of SCTG 03 to China, with an export mass
of 32.58 million tons and value of $14.15 billion US
dollars. This is consistent with the fact that the US is
a major exporter of soybean to China, and soy is con-
tained within SCTG 03. The US is a net importer of
processed food from China, as can be seen for SCTG
06 and 07. The US imports the most SCTG 07, with a
mass of 1.38 million tons and a value of $2.06 billion
US dollars.

Figures 4–7 map imports/exports for provinces
and states for each SCTG (e.g. SCTG 01-07). The
top ten importing and exporting states and provinces
by mass are listed in table 4. Louisiana, Washington,
Illinois, Texas, and Ohio are the five largest export-
ers of agri-food to China, accounting for 72% of
agri-food exports by mass. California, New Jersey,
New York, Illinois, and Texas are the top five import-
ing states, responsible for 62% of all US imports
from China. For China, Shandong, Yunnan, Hubei,

Guangdong, and Guanxi are the biggest exporting
provinces, making up about 49% of all exports.
Guangdong, Fujian, Jiangsu, Shandong, and Jilin are
the top importing provinces, with 42% of all agri-
food imports.

3.2. What are the major agri-food trade links
between Chinese provinces and U.S. states?
Answering this question requires examining link-
level interactions between states and provinces. We
estimate that there are 2954 undirected links between
states and provinces (2618 directed links for US
imports; 2704 directed links for US exports) out of
a potential 3348 links. This means that there is a
high level of interaction between states and provinces,
with a network density of 0.88. Density broken down
by direction of trade is 0.81 for total exports and
0.78 for total imports (see SI for the network dens-
ity categorized by each SCTG commodity type). It is
important to note that we calculate network density
in which each commodity provides a separate link.
For example, if Beijing province exports SCTG 01 to
Illinois, that is a unique trade link, and so is the export
of the same commodity from Illinois to Beijing.

Figure 8 maps link-level trade between states
and provinces for all agri-food commodities (i.e. the
sum of SCTGs 01–07) in mass (see the SI for
a version in dollar value ($)). Blue lines show
exports from US states; red lines represent exports
from Chinese provinces. The four largest export
links are from Louisiana to Guangdong, Fujian,
Shandong, and Jiangsu. Washington is also a major
exporter to Guangdong, Fugian, Shandon, Jiangsu,
and Jilin. The largest US import links are to California
from Yunnan, Hubei, and Shandong, with New
Jersey another important location for imports from
Yunnan, Hubei, and Shandong. These link-level res-
ults are consistent with our state-level estimates in
section 3.1, where we established that Louisiana,
Washington, and Illinois are the top exporters, and
California and New Jersey are the top importers.
Table 5 further reinforces the importance of soy
exports from theUS, since the top links forUS exports
to China for SCTG 03. The top links for US imports
from China are predominately SCTG 07.

3.3. What are the major agri-food trade links
between Chinese provinces and U.S. counties?
Figure 9 shows link-level trade between counties
and provinces for aggregated agri-food commodit-
ies (i.e. the sum of SCTGs 01–07). We estimate that
there are 162 922 undirected links for the county-
province network (137 375 directed links for US
exports; 112 179 directed links for US imports) out of
719 643 potential links. This means that the county-
province network has a density of 0.23. Density
broken down by direction of trade is 0.191 for total
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Figure 3. Barplots of US exports and imports with China in mass (A), (B) and US Dollars (C), (D) by Standard Classification of
Transported Goods (SCTG) agri-food category. SCTG 03 ‘Agricultural products’, which contains soy, is the largest export from the
US to China, whereas SCTG 07 ‘Other prepared foodstuffs’ is the largest import to the US from China.

exports and 0.156 for total imports (see SI for the net-
work density categorized by each SCTG commodity
type). The county-province network is thus less con-
nected than the state-province network, as we would
expect, due to finer spatial granularity. Yet, it is still a
well-connected network, highlighting the tight coup-
ling in agri-food trade between the US and China.

Figure 9 shows a similar spatial mapping to
figure 8 (see the SI for a similar map in units of
dollar value ($)). The largest county-level exports
to China are those of SCTG 03 from Louisiana
counties, namely Terrebone Parish, East Baton Rouge
Parish, and New Orleans, to the Chinese provinces
of Guangdong, Fujian, Shandong, and Jilin. For US
imports from China, we observe a mix of SCTG 03,
05, and 07 commodities. Shandong to Los Angeles
County, CA and Yunnan and Hubei to Middlesex
County, NJ trading SCTG 03 and SCTG 07, respect-
ively, are the largest US import links in mass (see
table 6).

3.4. What are the core nodes in the US–China
agri-food trade network?
The ten core locations for import and export across
agri-food commodities are listed in table 7 (see SI
for the top 10 core locations broken down by SCTG
commodities as well as a detailed explanation of the

core node analysis). As we expect, the counties with
international ports are identified as the core locations,
since they are responsible for collecting and dissem-
inating trade between the two countries. Here, port
counties are the transit hubs that facilitate the inter-
national trade of goods through air, land, and sea.

Note that our core node analysis include the
complete US–China bilateral trade network. This
means that international trade between counties and
provinces is included, as well as our inter-county
estimates to ports in the US, and inter-province con-
nections within China as given by the MRIO data.
However, Chinese provinces are not identified to be
core to the network. We believe this is primarily
because spatially refined food flow information is not
available within China to the same detail that it is
within the US. This means that we do not have the
same degree of topological detail within China as
we do within the US. We have normalized the node
degree centrality of all network nodes to account for
this difference in resolution. Chinese provinces do
appear in the top twenty list of core nodes, just not
within the top ten. This highlights the importance of
spatial detail in food trade information for resolving
the core locations.

Core nodes have domestic significance in terms
of regional employment, export gains [48], and have

9
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Figure 4. Heatmaps of exports in mass (1000 tons) from Chinese provinces to the US. Exports are shown for (A) SCTG 01,
(B) SCTG 02, (C) SCTG 03, (D) SCTG 04, (E) SCTG 05, (F) SCTG 06, and (G) SCTG 07. (H) shows exports for the cumulative of
all commodities from SCTG 01–07.

an international relevance as a medium of connecting
supply chains across countries [49].However, they are
sensitive to disruptions which could have major con-
sequences for both importing and exporting nations
in the bilateral network [50, 51]. Identification of
such centralized nodes can better inform the scale of
the potential impact of any future disruptions, help
to mitigate logistical and economical losses for both
countries, and assess network resiliency [52, 53]. Also,
since these core counties (port counties) are transit
hubs, catering to high trade demands, recognizing
such hubs in the network is integral to prioritizing

infrastructure investments in these locations for an
uninterrupted operation.

4. Discussion

Here, we discuss the limitations of our model, and
highlight opportunities for future research.

4.1. Limitations of modeling approach
The methodological framework that we employed
in this study is data-driven and relies on a variety
of input databases. The data-driven nature of our
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Figure 5. Heatmaps of imports in mass (1000 tons) by Chinese provinces from the US. Imports are shown for (A) SCTG 01,
(B) SCTG 02, (C) SCTG 03, (D) SCTG 04, (E) SCTG 05, (F) SCTG 06, and (G) SCTG 07. (H) shows imports for the cumulative of
all commodities from SCTG 01–07.

approach is both a limitation and an advantage. It is a
limitation because we do not explicitly include mech-
anisms that would enable us to run experiments with
themodel. Our data-driven approach alsomeans that
input data availability is a limitation to the time frame
of our study. This is the reason that our study is
restricted to the year 2017, for example. All estim-
ates in this study are for the year 2017, which is before
the retaliatory tariffs were implemented by China on
US agriculture. This means that our results repres-
ent a snapshot in time prior to these US–China trade
tension.

We show in figure 10 that our model captures
the animal feed supply chain between the two coun-
tries, in which soy is grown in the US and supplied to
animal feed operations in China. There is reasonable
spatial correspondence between soy production in the
US (from USDA data) and our model estimates of
SCTG 03 exports to China (e.g. compare figure 10(A)
with figure 10(B), although it is not perfect, largely
because we map soy production by SCTG 03 exports.
There is good spatial agreement between the loca-
tions with intensive pig production in China (taken
from [54]) and our model estimates of province-level
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Figure 6. Heatmaps of exports in mass (1000 tons) from US states to China. Exports are shown for (A) SCTG 01, (B) SCTG 02,
(C) SCTG 03, (D) SCTG 04, (E) SCTG 05, (F) SCTG 06, and (G) SCTG 07. (H) shows exports for the cumulative of all
commodities from SCTG 01–07.

imports of SCTG 03. We thus notice that major soy
producing locations also tend to be major export-
ers, while pig fattening locations in China are likewise
major importers. Figure 10 also highlights a major
limitation of our study, in that it is restricted by the
commodity resolution of the SCTG groups (e.g. see
table 2). This means that we do not explicitly model
the trade of soy, for example, but, instead estimate
imports/exports of SCTG 03 ‘agricultural products’,
the commodity category which contains soy.

Themain shortcoming of our study is the absence
of ground truth data to validate our high-resolution
trade estimates. Yet, our methodological framework
is constrained by a variety of real-world measures
to ensure that our estimates are bounded by reality.
Another limitation of the analysis is the mirror dif-
ferences in the data sources e.g. there might be a dif-
ference in reporting for exports fromUS toChina and

China imports from the US. Here, we utilize the US
Census data as the standard dataset for the conversion
of MRIO sector-based commodity data into SCTG
commodity data due to accessibility and credibility
concerns. Also, as MRIO reports data in a coarser
commodity category than SCTG commodity categor-
ies, the crosswalk only provides an estimate of the cor-
responding SCTG equivalent share which might be
different from the actual records.

Our approach relies on some key assumptions.
Namely, we assume that goods are well mixed once
they arrive at a port. This means that they are sent out
in the same proportion that they are received. In other
words, if 30% of SCTG 03 received at Los Angeles
County, CA was from Champaign County, IL then
we assume that exports from Los Angeles County, CA
to provinces in China are still in the 30% propor-
tion from Champaign County, IL (see section 2.4).

12
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Figure 7. Heatmaps of imports in mass (1000 tons) to US states from China. Imports are shown for (A) SCTG 01, (B) SCTG 02,
(C) SCTG 03, (D) SCTG 04, (E) SCTG 05, (F) SCTG 06, and (G) SCTG 07. (H) shows imports for the cumulative of all
commodities from SCTG 01–07.

Similarly, we determine the proportion of trade by
SCTG commodity that is from the US to China (out
of the East Asia region reported by the FAF data-
base) using a national ratio to partition this trade. The
same is true for estimating exports from provinces
to the US as a fraction of the Rest of World repor-
ted by the MRIO database. Further, we assume that
the national average shares of SCTG commodities
within MRIO sectors (using SCTG-MRIO crosswalk)
applies equally to all provinces. Finally, we assume
that the location fractions of provinces apply equally
to the trade with all US states. These limitations and
assumptions of our study are important to note when
using our estimates.

4.2. Future research
The main advantage of our model is the provision
of high-resolution US–China agri-food trade. We

provide a schematic of what the output of our model
looks like in figure 2, for several important locations.
Figure 2 illustrates that we map both imports and
exports at high spatial resolution between the two
countries. In particular, we restrict our trade estimate
tomove to/from port counties in the US, highlighting
the two-step nature of our food flow estimates within
the US. This figure is a simple illustration of two
trade links, while we provide many more link-level
estimates that future researchers and decision-makers
could use to inform their future analysis. Decision-
makers may want to augment our estimates with
additional local data that they are in possession of.

We used the FFM to estimate flows between
counties in the US, but adapted it to specifically
estimate exports and imports fromChina. Our adapt-
ation of the FFM highlights that it can be used
to partition both domestic and international supply
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Table 4. Top 10 exporting and importing US States and Chinese Provinces by mass (kilograms) for 2017.

Exporting States Exporting Provinces

Rank FIPS State Mass (Kg) Rank Province Mass (Kg)

1 22 Louisiana 1.501811× 10+10 1 Shandong 3.597684× 10+08

2 53 Washington 1.211408× 10+10 2 Yunnan 3.073432× 10+08

3 17 Illinois 4.399203× 10+09 3 Hubei 2.908091× 10+08

4 48 Texas 3.629594× 10+09 4 Guangdong 1.728592× 10+08

5 39 Ohio 1.663574× 10+09 5 Guangxi 1.451397× 10+08

6 6 California 1.352330× 10+09 6 Jiangsu 8.296290× 10+07

7 51 Virginia 9.914621× 10+08 7 Zhejiang 6.315387× 10+07

8 41 Oregon 7.221310× 10+08 8 Fujian 5.936550× 10+07

9 20 Kansas 4.619746× 10+08 9 Liaoning 5.840705× 10+07

10 1 Alabama 4.367694× 10+08 10 Guizhou 4.828871× 10+07

Importing States Importing Provinces

Rank FIPS State Mass (Kg) Rank Province Mass (Kg)

1 6 California 7.667745× 10+08 1 Guangdong 6.942945× 10+09

2 34 New Jersey 2.792438× 10+08 2 Fujian 6.293722× 10+09

3 36 New York 1.840188× 10+08 3 Jiangsu 5.453784× 10+09

4 17 Illinois 1.390613× 10+08 4 Shandong 4.904492× 10+09

5 48 Texas 7.982427× 10+07 5 Jilin 3.694300× 10+09

6 12 Florida 7.084679× 10+07 6 Shanghai 2.223943× 10+09

7 13 Georgia 5.008770× 10+07 7 Liaoning 1.895771× 10+09

8 53 Washington 4.983979× 10+07 8 Beijing 1.534432× 10+09

9 24 Maryland 4.726833× 10+07 9 Zhejiang 1.517296× 10+09

10 25 Massachusetts 4.471304× 10+07 10 Guangxi 1.382400× 10+09

Figure 8. Bilateral state-province trade of cumulative (all agri-food) commodities between the US and China. The map shows
only the top 70% of all flows. A line originating from a US state (blue) joins another line from a Chinese province (red) and the
lengths of these lines depend on the proportional trade of cumulative commodities between the state and the province. The
thickness of a line indicates the proportion of trade for the origin country. Thicker red lines are the major commodity trades for
Chinese provinces. Thicker blue lines are the major commodity trades of US counties.

chain information within the US in future work.
Moreover, this study could serve as a useful blueprint
for other geographic regions and goods. In partic-
ular, other countries that have sub-national supply
chain data wouldmake viable candidates for applying
our methodology to. For example, future work may
integrate our approach to map the US-Brazil supply
chain, using the TRASE database [30]. Application to
other supply chains with important sustainability and
national security implications, such as rare earths,
energy commodities, or forestry products, would be
particularly valuable.

The spatially detailed trade data that we have
generated in this study (and make freely available
with the paper) could be paired with footprint estim-
ates to quantify embodied resource (e.g. water, car-
bon, etc) in future work. However, it is important
to note that our flow database would help to resolve
transport footprints, which are considerably smal-
ler than production footprints [27], but could still
be large and comparable to the emissions of some
nations [55]. Another important avenue of future
research is to determine any vulnerabilities that may
exist in this bilateral agri-food trade network. Since
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Table 5. Top 10 link-level bilateral flows for exports from US states to Chinese provinces and imports from Chinese provinces to US
states in mass (kg) for 2017.

Exports from US states to Chinese provinces

Rank FIPS State Province SCTG Mass (Kg)

1 22 Louisiana Guangdong 3 2.301481× 10+09

2 22 Louisiana Fujian 3 2.131300× 10+09

3 22 Louisiana Shandong 3 1.917430× 10+09

4 22 Louisiana Jiangsu 3 1.761126× 10+09

5 53 Washington Guangdong 3 1.510913× 10+09

6 22 Louisiana Jilin 3 1.454111× 10+09

7 53 Washington Fujian 3 1.399190× 10+09

8 53 Washington Shandong 3 1.258785× 10+09

9 53 Washington Jiangsu 3 1.156172× 10+09

10 53 Washington Jilin 3 9.546180× 10+08

Imports from Chinese provinces to US states

Rank FIPS Province State SCTG Mass (Kg)

1 6 Yunnan California 7 6.421248× 10+07

2 6 Hubei California 7 5.970372× 10+07

3 6 Shandong California 7 5.652570× 10+07

4 6 Shandong California 3 4.367969× 10+07

5 34 Yunnan New Jersey 7 3.424017× 10+07

6 34 Hubei New Jersey 7 3.183596× 10+07

7 34 Shandong New Jersey 7 3.014133× 10+07

8 6 Guangxi California 7 2.989392× 10+07

9 6 Guangdong California 7 2.867609× 10+07

10 6 Yunnan California 5 2.363811× 10+07

Figure 9. Bilateral county-province trade of cumulative (all agri-food) commodities between the US and China in mass
(kilograms). The map shows only the top 1% of all flows. A line originating from a US county (blue) joins another line from a
Chinese province (red) and the lengths of these lines depend on the proportional trade of cumulative commodities between the
county and the province. The thickness of a line indicates the proportion of trade for the origin country. Thicker red lines are the
major commodity trades for Chinese provinces. Thicker blue lines are the major commodity trades of US counties.

trade between the US and China has global reper-
cussions it is important to identify opportunities to
reduce risk in their joint supply chains. As such, our
work could also be used to inform supply chain secur-
ity, such as identifying locations to explore further for
infrastructure investment.

Our results are provided at two spatial resolu-
tions within the US: states and counties. However, the
statistical information needed for our model are only
available for provinces within China. Future research

onmulti-scale agri-food supply chains inChina could
build on this work. In particular, it would be bene-
ficial for future studies to identify the movement
of agricultural and food commodities through the
ports of China, as we were able to do within the
US. Similarly, further efforts to identify the choke-
points in agri-food supply chains within both coun-
tries, such as processing facilities, transit hubs, and
storage depots, would provide the insight necessary
to evaluate their sustainability and resilience.
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Table 6. Top 10 link-level bilateral flows for exports from US counties to Chinese provinces and imports from Chinese provinces to US
counties in mass (kilograms) for 2017.

Exports from US counties to Chinese provinces

Rank FIPS County Province SCTG Mass (Kg)

1 22 109 Terrebonne Parish, LA Guangdong 3 8.809741× 10+08

2 22 109 Terrebonne Parish, LA Fujian 3 8.158314× 10+08

3 22 109 Terrebonne Parish, LA Shandong 3 7.339648× 10+08

4 22 109 Terrebonne Parish, LA Jiangsu 3 6.741340× 10+08

5 22 033 East Baton Rouge Parish, LA Guangdong 3 5.604013× 10+08

6 22 109 Terrebonne Parish, LA Jilin 3 5.566131× 10+08

7 22 033 East Baton Rouge Parish, LA Fujian 3 5.189630× 10+08

8 22 071 New Orleans, LA Guangdong 3 5.040001× 10+08

9 53 061 Snohomish County, WA Guangdong 3 4.888688× 10+08

10 22 033 East Baton Rouge Parish, LA Shandong 3 4.668864× 10+08

Imports from Chinese provinces to US counties

Rank FIPS Province County SCTG Mass (Kg)

1 6037 Shandong Los Angeles County, CA 3 3.781605× 10+07

2 34 023 Yunnan Middlesex County, NJ 7 2.508692× 10+07

3 34 023 Hubei Middlesex County, NJ 7 2.332541× 10+07

4 6065 Shandong Riverside County, CA 3 2.248353× 10+07

5 34 023 Shandong Middlesex County, NJ 7 2.208380× 10+07

6 6075 Shandong San Francisco, CA 3 1.964555× 10+07

7 6037 Fujian Los Angeles County, CA 3 1.786836× 10+07

8 6037 Guangdong Los Angeles County, CA 3 1.534101× 10+07

9 6037 Yunnan Los Angeles County, CA 5 1.505280× 10+07

10 6073 Shandong San Diego County, CA 3 1.492022× 10+07

Table 7. Top 10 core locations in the US–China bilateral agri-food flow network in 2017.

U.S. Imports U.S. Exports

Rank FIPS County Rank FIPS County

1 6071 San Bernardino County, CA 1 6037 Los Angeles County, CA
2 6037 Los Angeles County, CA 2 6065 Riverside County, CA
3 6111 Ventura County, CA 3 41051 Multnomah County, OR
4 17031 Cook County, IL 4 6075 San Francisco County, CA
5 17043 DuPage County, IL 5 6071 San Bernardino County, CA
6 13051 Chatham County, GA 6 6111 Ventura County, CA
7 34013 Essex County, NJ 7 53057 Skagit County, WA
8 34027 Morris County, NJ 8 53061 Snohomish County, WA
9 34023 Middlesex County, NJ 9 15007 Kauai County, HI
10 51710 Norfolk City, VA 10 22033 East Baton Rouge Parish, LA
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Figure 10. Bilateral trade in SCTG 03 ‘agricultural products’ between the US and China. (A) Soy production by county from
USDA data. (B) Model estimates of exports of SCTG 03 in mass by US State. (C) Intensive pig production as provided by [54].
(D) Model estimates of imports of SCTG 03 in mass by province in China. Note that all information is mapped for the year 2017.

5. Conclusion

In this study, we mapped the finest spatially resolved
bilateral agri-food trade between the US and China.
To do this, we developed a novel data-driven
model that allowed interoperability between differ-
ent national datasets. We generated state-province
and county-province links that help in identifying
the most concentrated food flows and major sub-
national locations in the bilateral trade network.
Louisiana, Washington, and Illinois are the major
agri-food exporters, while Guangdong, Fujian, and
Jiangsu are the major importers. We also identified
the core export locations in the bilateral agri-food
trade network are namely, San Bernardino County,
CA; Los Angeles County, CA; Ventura County, Ca;
Cook County, IL; and DuPage County, IL. These core
nodes are transit hubs that are critical to the seamless
functioning of the US–China bilateral trade network,
as any disruption could have major logistical and
economic losses for both countries. We notice that
Chinese provinces are not part of the top 10 core
nodes in the network. We suggest that this is primar-
ily due to the unavailability of high resolution food
flow information within China. This highlights the
importance of spatially detailed data for the identi-
fication of critical nodes in a trade network.

Our study contributes to a more comprehensive
understanding of agricultural and food trade between

the US and China. Future research can explore sup-
ply chain sustainability, security, and investment
between the two countries using the database that we
have providedwith the paper. Notably, the framework
that we developed may prove to be a useful blueprint
for modeling the supply chains of other geographic
regions and goods.
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